

Abstract — since being proposed in May 2000, the SOAP

Internet protocol has by now revolutionized application
development by connecting graphic user interface desktop
applications to powerful Internet servers using the standards
of the internet: HTTP and XML. However the fact that it
uses a text-based XML encoding unlike the traditional binary
protocols, results in higher bandwidth consumption, bigger
storage requirement and increased processing overhead.
When using mobile devices, one additional question about the
battery performance raises. This paper presents the results of
implementing efficient compression and its positive impact to
the overall performance of the mobile devices that use
wireless communication with web services, in terms of
significantly reduced bandwidth, quite improved response
time, and extended battery life of the mobile devices.

Keywords – web service, optimization, SOAP compression,
battery life

I. INTRODUCTION
HE DEVELOPMENT of wireless networks brought a new
impulse to the portable devices as well. The new

possibilities in the field of portability envisioned a new
way in design and implementation of wireless
communication protocols between mobile devices and one
central system. Ever since, the transportation of data
acquired from and sent to these devices has been
challenging in aspects of security, stability, performance,
response time, battery life, etc. In this paper an accent is
put over the optimization of usage of web services through
wireless medium by compressing the soap messages that
travel through the network.

In general the web services allow the applications to use
them as black boxes, passing some parameters to them and
expecting results without any need for knowing what the
web service actually does inside its code. The application
“knows” which parameters to send and what results to
expect, and this “knowledge” comes from the web
reference within the application itself – a proxy created
according to the web service description language file
which is part of the web service itself. The self describing

Ivan Ivanovski, B.Sc., Faculty of Electrical Engineering and
Information Technologies in Skopje, Macedonia (tel: + 389 71 386501;
e-mail: i.ivanovski@gmail.com)

Saso Gramatikov, B.Sc., Faculty of Electrical Engineering and
Information Technologies in Skopje, Macedonia (tel: + 389 2 3099 153;
e-mail: saso.gramatikov@feit.ukim.edu.mk)

Dimitar Trajanov, Ph.D., Faculty of Electrical Engineering and
Information Technologies in Skopje, Macedonia (tel: + 389 2 3099 153;
e-mail: mite@feit.ukim.edu.mk)

attribute of the web service is what makes it so powerful
and gives the opportunity to be used as an outsourcing
service for application. Since the processing happens on
some server where the web service is hosted, using web
services keeps application itself small in bytes, and also
keeps the local processing light. In its root, a web service
is a software system identified by a URI, whose public
interfaces and bindings are defined and described using
XML, so that its definition can be discovered by other
software systems. These systems can then interact with the
web service in ways prescribed by its definition, using
XML based messages. These messages are transported
using standard internet protocols. HTTP is the standard
network protocol for internet available web services,
although platform or vendor specific protocols are also
plausible. One level higher than the transport protocols
lays Simple Object Access Protocol or SOAP – a simple,
lightweight XML mechanism for creating structured data
packages which are being exchanged between network
applications. Four basic elements are fundamental
components of SOAP: (1) an envelope that defines a
framework for describing message structure; (2) a set of
encoding rules for expressing instances of application-
defined data types; (3) a convention for representing
remote procedure calls (RPCs) and responses; and (4) a set
of rules for using SOAP with HTTP. SOAP is quite simple
and thin top-up over the existing network protocols that
are widely implemented. It is easily extensible,
understandable and it is based on XML. However, since
the messages that pass here are self-describable, text-
based, there is one setback – redundancy in data. This
paper offers a solution how that redundancy can be
eliminated with a cost-effective method that has a great
impact on more aspects of the overall performance of
mobile applications that use web services over wireless.

In Section II a related work is discussed. Several
different proposals for optimizing web services are
compared and analyzed. In Section III the optimization
method proposed in this paper is discussed. Furthermore,
in Section IV the actual implementation of the
optimization technique is explained and clarified. In
Section V the performance analysis and the improvement
of the quality of service is presented. Conclusion is given
in Section VI.

II. RELATED WORK
Different aspects of optimizing the performances of

portable devices have already been approached. An
approach has been made straight to the root of the
problem, the text-based representation. A binary

Enhancing Performance of Web Services
in Mobile Applications by SOAP Compression

Ivan Ivanovski, Saso Gramatikov, Dimitar Trajanov

T

16th Telecommunications forum TELFOR 2008 Serbia, Belgrade, November 25-27, 2008.

846

representation has been proposed instead [2, 8]. Using a
binary rather than text-based encoding format raises
problems of multiple binary representation of XML [5].
The interoperability with the existing standards also rises
as an issue. Many experiments with binary representations
of XML lead to conclusion that although the compression
is higher, the text compression methods are still
competitive in many scenarios [8]. A proposal in direction
of solving the verbosity and bandwidth issues suggests
efficient compression [6]. This would keep the basic
structure of data as text-based XML, and there are a
numerous compression techniques [7] that are adequate for
compressing XML. Suggestions are diverse so much that a
proposal for data transfer over FTP has also been raised
[9], instead of using standard HTTP protocol. However,
additional requirements such as larger disk space for data
storage appear when using FTP, so compression technique
is again needed. Adaptive SOAP (or A-SOAP) [10] goes
one step further and focuses, besides on compressing
messages, also on accelerating message composition and
reducing parsing overheads. Its endpoints do not exchange
dictionaries in advance, rather as the communication
progresses. So far, Microsoft has already discussed the
compression of web services payload [11] and the positive
impact of SOAP optimization in terms of reduced costs
and more reliable transfer. The proposed mechanism of
extending SoapExtensionAttribute and SoapExtension, the
two classes of System.Web.Services.Protocols
namespace, is the same one applied in the testbed that is
presented later in this paper. Although all of these
compression techniques produce good compression ratios,
not many effectiveness studies have been conducted. This
paper looks more into these optimization techniques and
the impact they have on the performance.

One other aspect which is a key attribute to the overall
performance of the portable devices is certainly the battery
life. Extending the battery life has not only been a
challenge on the hardware level, but also there have been
several proposals on battery life improvement, one of
which seems like ingenious one [3]. The solution proposed
by the HP team consists of rapid switch of the state of the
processor in standby mode and activating it back when a
button is pressed or the screen is touched. In the
meantime, the display maintains the last screen so the user
has an illusion that the device is working fully active all
the time. However, this solution would only work when
using the device in a passive mode (watching/analyzing
data at the screen, reading texts, etc.). In a case when
continuous connectivity and processing is needed, the text
compression seems like one of the most reasonable
approaches.

III. TEXT COMPRESSION
Compressing text is a procedure that can reduce the size

of a text file up to 80% which means that the compressed
text can be stored using 80% less space than
uncompressed text. It also means that the content needs
less time to be transferred over a network, which translates
into higher performance for client-server applications that
communicate with text, like the Web services themselves.

As introduced in Section I, the Web Services exchange
data with client applications (or other web services, for
instance), in a pure text-based format, i.e. XML structured
SOAP messages. Since these data is highly redundant in
its reserved xml characters and tags, the compression of
such text could be looked at as a quite beneficial.

Most of the project designers try to find a way to lower
the size of the data which is passed between the clients and
the servers. Few experienced engineers are using advanced
techniques to improve performance of the data transfer
through a network, but the overhead accompanying this
data transfer remains a bottleneck in many distributed
systems. There are two possible solutions to this issue.
One is to increase the bandwidth, but not always is such a
solution possible or practical. Increasing bandwidth can
also significantly increase the overall costs of the solution.
The other solution is to decrease the amount of data that is
travelling through the network. And “decrease” in this
term means nothing more than compressing the text. This
second approach has a trade-off itself, too, but not as
costly as increasing bandwidth. It requires extra processor
time at the client and at the server, respectively, so that the
messages could be compressed at one side and then
decompressed at the other, and vice versa.

IV. IMPLEMENTATION USING SOAP EXTENSIONS
Fig. 1 shows the cycle of exchanging messages using

SOAP. At client side, the web reference in form of a client
proxy holds the necessary interface for communicating
with the real web service across the internet.

Fig. 1. XML Web Services Architecture

The proxy holds the knowledge of how each data that
needs to be sent over the network to the web service as an
input parameter should be serialized as text. The data is
then serialized in a text-based SOAP message and at the
other end, right before it is accepted at the web service
side, it is being de-serialized. The web service then
processes the request and returns the result which before
passing across the network is serialized and then, before
reaching the proxy de-serialized back to its original form
(the original object), again with the knowledge contained
in the proxy. This means that the data is transformed into
text-based message right after serialization and it keeps
format until the de-serialization at the other end. Using
SOAP extensions, it is possible to intervene in this process
and compress the messages after the serialization is
complete. After travelling across the network as
compressed text (TCP does not need to read the data, it
only cares for accurate transfer of bytes), they need to be

847

put back in understandable format before de-serializing.
As Fig. 2 shows, some processor time both at the client

side and the server side needs to be traded off in order to
compress all outgoing serialized data and decompress all
incoming data, and then pass it to be de-serialized.

Fig. 2. Implementation of Compression and

Decompression after serialization and before
deserialization

In the first situation, when we have a usual no-
compression-involved transmission, the total time needed
for a client request to be processed would be given in (1):

servprocdesertrserTotal ttttT +++⋅=)(2 (1)
Where tser is time needed to serialize the request in xml

format, i.e. prepare it to be sent via SOAP protocol, ttr is
the time needed to actually transfer the serialized request,
tdeser is the time needed to de-serialize the xml text into
objects understandable for the applications and tservproc is
the time needed for processing the request and producing
the results at the server side. The same circle of
serialization, transport and de-serialization happens in the
opposite direction as well and therefore the quotient before
the sum of tser, ttr and tdeser is 2.

In the situation when optimization is used, additional
time for compression / decompression at both server and
client side is needed. So the total time needed for
processing the request would be given in (2):

deccomservprocdesertrserTotal tttttT /)(2 ++++⋅= (2)

One additional time appears in the latter formula, tcom/dec
stands for the average time needed for compressing and
decompressing the text. More accurately, tcom/dec is a sum
of the time needed to compress the serialized text at the
client side, the time needed to decompress this data into
serialized text at the server side, right before de-
serialization, the time needed to compress again the
serialized text, but this time at the server side and finally,
the time needed to decompress the compressed data into
serialized text, before de-serialization at the client side.

V. PERFORMANCE ANALYSIS
In order to get the true impression about the impact the

text compression has over the passing SOAP messages, a
proper testbed has been set. The testbed, as seen in Fig. 3,
consists of a remote mobile device – HTC P3300 with a
SIM card included (with GPRS activated), and a web
server across a public Internet network. From software
components, the mobile device has a portable application

installed, and the web server hosts a web service published
on the Internet, interconnected with a database. The
mobile application is implemented using Compact
Framework .NET 2.0 and references the web service. The
web service is implemented using .NET Framework 2.0
and the database is hosted at SQL Server 2005.

Fig. 3. The testbed

The test scenario was conducted as follows: the mobile
application issues requests over wireless network to the
publicly hosted web service. This web service then
completes the processing, communicating with a database
in the meantime, and returns back the results, again over
the wireless network. All the communication takes place
conforming to the XML web service and SOAP messaging
standards discussed before. Two variations of this scenario
were actually conducted, one without optimization
included, and another test with the necessary soap
extensions implemented. What is meant under wireless
network are actually two variations. First a 801.11 WiFi
wireless network was used as a transport medium, and
then a GPRS network was used. Several experiments have
been conducted. In each of them different requests in
terms of different data loads have been issued first over
WiFi and then over GPRS network. The same requests
were then issued, but this time using optimization.

Fig. 4. Time needed to process client requests via Wi-Fi
The results of the experiment conducted over a Wi-Fi

network are given in Fig. 4. As we can see from the chart,
there is a significant reduction of time needed for the
complete cycle of processing one client request to be
completed. For instance, if there is a request for 2.500
rows from the database, the amount of data that would
have to be carried back to the client is 1259kB. For a Wi-
Fi environment, a normal uncompressed transfer would
require 19.5 seconds. When using compressed data, this
time drops to just 3.8 seconds. Several requests were
processed, starting from 500 data rows, 1.000, 1.500, and
so on, up to 3.500 data rows requested. With each increase
of 500 data rows more being requested, i.e. around 250kB
increase in traffic, the total time needed to process a

848

request would rise for around 4-5 seconds. For the initial
500 rows requested, the Ttotal equals 3.5 seconds, but for
3.500 data rows requested (i.e. 1764kB data) the total time
rises up to over 27 seconds. However, when using the
compression and decompression, the total time
significantly drops, for the first case of 500 data rows it is
less than a second, and for the highly loaded case of 3500
data rows requested, the total time remains under 6s which
is in fact an improvement of more than 80%.

Fig. 5. Time needed to process client requests via GPRS

If we look at the next chart in Fig. 5, the results are
more than promising. Due to the slower communication,
the uncompressed transfer here takes quite more time. For
the least loaded request of just 500 data records, it takes
less than 30 seconds, but 30 seconds could mean a must-
not-happen eternity in client real-time application. The
highest loaded request of 3500 data records took
staggering 248 seconds to be processed. The implemented
compression/decompression decreased Ttotal for about 90%
of its initial value without optimization, lowering it down
to acceptable 22 seconds.

This significant reduction of the time needed for a
complete client request processing is mostly due to the
reduction of data by compressing the text by using the Zip
algorithm with size reduction ratio of 5:1. The trade-off
time needed for server side compression/decompression is
less than 0.1s, and on the client side (HTC device) it can
go slightly over 1s for large data. So, tcom/dec is much lower
than the time of data transfer ttr, therefore the Ttotal mostly
depends on the size of the data to be transfered, so when
this size is reduced 5 times, the Ttotal drops in similar ratio.

Fig. 6. Battery level drop (%), during normal and

optimized transfer
We are not interested just in the time performance.

Since the transponder/receiver of the device works for a
significantly less time, especially when GPRS is used, the
battery of the device is saved. Two tests were conducted –

each consisting of 15 consecutive requests issued over the
wireless medium from the mobile application towards the
server. In the first test – without optimization, the battery
level drops from level for more than 13%. When
optimization is used in the second test, the battery level
drops for just less than 6%, which is a great improvement.
Graphical representation is given in Fig. 6. So the overall
energy saving is more than double. Presenting results in
percents is important, because the values measured could
vary from device to device.

VI. CONCLUSION
The solution presented in this paper provides the

opportunity to transfer data in a secure, reliable way which
has proved to improve the performances of mobile devices
using wireless transfer to communicate with a server. The
improvement is not only demonstrated in shorter time
needed for the transfer to be completed, but also in the
extended battery life, which for mobile devices is of great
importance. The SOAP extensions responsible for
compression and decompression of SOAP messages are
easily applicable to every web-service-based application
and the effects presented in this paper are common for
every similar environment.

The future work would mainly focus on creating a new
lower-level layer that would deal with compression and
decompression of the data traffic. In that way, instead of
additional programming, a completely new transport layer
extending the existing TCP protocol would be responsible
for the traffic optimization.

REFERENCES
[1] Cai, M., Ghanderizadeh, S., Schmidt, R., et al. “A Comparison of

Alternative Encoding Mechanisms for Web Services”, Proceedings
of the DEXA 2002

[2] Alex Ng, Paul Greenfield, Shiping Chen, “A Study of the Impact of
Compression and Binary Encoding on SOAP Performance”,
Department of Computing, Macquarie University – North Ride,
Australia, AWSA 2005

[3] Lawrence S. Brakmo, Deborah A. Wallach, Marc A. Viredaz,
“µSleep: A technique for Reducing Energy Consumption in
Handheld Devices”, HP Laboratories, Palo Alto, January 2004

[4] Chiu, K., Govindaraju, M., and Bramley, R., “Investigating the
Limits of SOAP Performance for Scientific Computing”,
Proceedings of 11th. IEEE International Symposium on High
Performance Distributed Computing HPDC-11 2002 (HPDC'02)

[5] Pal, S., Marsh, J., and Layman, A.: “A Case against Standardizing
Binary Representation of XML”, Proceedings of the Workshop on
Binary Interchange of XML Information Item Sets. 2003

[6] Girardot, M. and Sundaresan, N.: “Millau: an encoding format for
efficient representation and exchange of XML over the Web”,
Proceedings of IX IWWWC, Amsterdam, May 2000

[7] Liefke, H. and Suciu, D. XMill: “An Efficient Compressor for
XML Data”, Proceedings of the ACM SIGMOD International
Conference on Management of Data. Dallas, USA, June 2000

[8] Software Technology Group, MSI, Växjö University, Växjö,
Sweden: “The Effects of XML Compression on SOAP
Performance”, World Wide Web – Springer Netherland, July 2007

[9] Tanakorn Wichaiwong, Chuleerat Jaruskulchai, “A Simple
Approach to Optimize Web Services’ Performance”, Proceedings
of IAIT 2007

[10] Marcel-Catalin Rosu “A-SOAP: Adaptive SOAP Message
Processing and Compression”, Proceedings of IEEE International
Conference on Web Services 2007, (ICWS 2007) pp.200-207

[11] Andy Wigley, Daniel Mothand, Peter Foot, “Microsoft Mobile
Development Handbook”, Microsoft Press 2007

849

