
  

  

Abstract — This paper presents a novel approach to the 

formal verification of resistive electrical circuits using the 

probabilistic model checking. 

 

Keywords — formal verification, probabilistic model 

checking, resistive electrical circuits, sensitivity analysis. 

 

I. INTRODUCTION 

he formal verification of a hardware system is a formal 

mathematical procedure of proving or disproving the 

correctness of a designed system with respect to a certain 

formal specification or property. The formal mathematical 

proof (also called static verification) should be 

distinguished from the functional (dynamic) verification, 

validation or simulation of the behavior of the system 

under test. 

Based on a successful application of different formal 

verification techniques for digital circuits (like Binary 

Decision Diagrams (BDD) based equivalence checking, 

Linear Time Logic (LTL) and Computation Tree Logic 

(CTL) based model checking etc.) [1], formal verification 

is applied to analog circuits as well. In contrast to digital 

logic (basically, computing over finite fields �� and 

discrete time �), analog circuits are continuous in signal 

values (computing over field �) and time (again �), 

resulting in much harder verification tasks. One has to deal 

with infinite state space and dense metric time. 

The keyword/key phrase “sensitivity analysis” of 

electrical circuits/networks [2] is coined before the wider 

introduction of the formal verification methods into the 

analog world. It may be the case that the contents of two 

research fields have large overlapping and same goals. 

When one talks about the “tolerance analysis”, “sensitivity 

analysis”, “noise analysis” or “worst-case simulation” in 

this context, it usually refers to changes in input-output 

behavior under (small, allowed/guaranteed by industrial 

manufacturer) changes/variations in the nominal values of 

circuit parameters, like resistors R, capacitors C or 

inductors L. In reality, there is no such thing as a “perfect” 

component, and even the most precise electrical 
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components available in the market have their own 

tolerances. For example, if we consider a simple 100-ohm 

resistor, it will always have a tolerance value of, for 

example, five percent (5%). Thus, the minimum and 

maximum values of this component in mass production are 

95 and 105 ohms. It is also common to talk about 

“robustness of perturbed systems”, addressing behavior 

under extreme min/max values (95 and 105 ohms). 

Specified quantities of interest can be also stability of 

output voltage and/or current, guaranteed attenuation 

and/or amplification, stability of poles and zeros of the 

system, maximum deviation from specified frequency 

characteristics (amplitude and phase characteristics), 

limited power dissipation, tracing of desired trajectory in 

state-space, stability of operating points etc. All those 

properties are also of interest in formal verification of 

analog circuits. 

The probabilistic interpretation of voltages and currents 

in the circuit theory [3] is not a mainstream of engineering 

practice. Modeling of electrical circuits based on Markov 

chains is well known in mathematics, where it represents 

an interesting illustration of the theory of Markov chains. 

This situation exists probably due to the lack of further 

practical applications. Applying Probabilistic Symbolic 

Model checker (PRISM) [4] in the verification of an actual 

input-output behavior of the circuit (with respect to the 

specified properties), or in estimation of tolerance and 

robustness of the circuit behavior (with respect to the 

changes or perturbances in circuit parameters), could 

represent such a well motivated practical application. 

There are numerous proposed approaches to formal 

verification of analog circuits: a) influential German school 

of Lars Hedrich and Erich Barke has several results 

(verification of linear and nonlinear circuits, both in time 

and frequency domain, based on sampling of the state 

space, or interval arithmetic, or model checking in CTL-

AT logic (logic CTL extended with real time) etc.); b) 

work of C.-J. Richard Shi (based on symbolic determinants 

and Determinant Decision Diagrams, DDDs); c) work of 

Chris J. Myers et al. (based on Timed Hybrid Petri Nets); 

d) work of Oded Maler (based on Signal Temporal Logic 

(STL) and variants of different Real-time Temporal 

Logics, such as MITL[a,b]); e) work of Seshadri and 

Abraham (based on global optimization techniques); f) 

work of Ghosh and Vemuri (using higher-order logic proof 

checker PVS), to name just a few. We omit here the 

extensive list of references due to the limitation on paper’s 

length. 

The proposed approach is a novel one, in the context of 

the formal verification of analog electrical circuits. We are 
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aware of only one paper (not involving PRISM), whose 

authors are tracing similar path [5], but they use so called 

Markov Network, and not the probabilistic interpretation 

of voltages and currents in Discrete-time Markov chain 

(DTMC) and Continuous-time Markov chain (CTMC) 

models of electrical circuits. 

 

II. PROBABILISTIC INTERPRETATION OF VOLTAGES AND 

CURRENTS AND MODELING OF RESISTIVE ELECTRICAL 

CIRCUITS AS DTMCS 

The probabilistic modeling of electrical circuits is 

introduced in [3]. We present here a short introduction 

following terminology and an original example taken from 

the reference book [3]. 

Random walk in one dimension will be explained with 

an example: a man walks along a 5-block stretch of 

Madison Avenue. He starts at corner x and, with 

probability p, walks one block to the right and, with 

probability q =1-p, walks one block to the left. When he 

comes to the next corner he again randomly chooses his 

direction along Madison Avenue. He continues until he 

reaches corner 5, which is home, or corner 0, which is a 

bar. If he reaches either home or the bar, he stays there. 

 

 
Fig. 1. Random walk example; taken from [3]. 

 

When modeling a resistive electrical circuit, which 

consists of resistive net and voltage sources applied on 

certain nodes, two dimensional walk is considered, where a 

walker might have more than two choices at any node. In 

this model, node 0 (bar) models ground, node 5 (home) 

voltage source and probabilities p and q model resistor 

values joined to the edges of the underlying graph. 

When modeling a general affine resistive electrical 

circuit, probability that the walker will choose to go to 

node Y when he is in node X, is equal to the electrical 

conductance G (reciprocal value of electrical resistance R) 

between nodes Y and X, divided by the sum of the 

conductances from node X to all other nodes. 

Here we give the probabilistic interpretation of voltages 

and currents in resistive circuit/networks as defined in [3]. 

 

Claim 1: (Probabilistic interpretation of voltages) Let 

hX be the hitting probability, that random walker, starting 

at node X, will reach node A before B. If a unit voltage 

VA, is applied between nodes A and B of the circuit, then 

the voltage Vx at any node X is equal to hX . 

If an arbitrary voltage VA between nodes A and B is 

assumed instead of the unit voltage, then the hitting 

probability hX would be replaced by an expected value in a 

game where the player starts at X and is rewarded VA if A 

is reached before B and 0 otherwise.         Ñ 

 

Claim 2: (Probabilistic interpretation of currents) When 

a unit current flows into node A and out of node B, the 

current iXY flowing through the branch connecting X to Y 

is equal to the expected net number of times that a walker, 

starting at A and walking until he reaches B, will move 

along the branch from X to Y. These currents are 

proportional to the currents that arise when a unit voltage 

is applied between A and B, the constant of proportionality 

being the effective resistance of the network.     Ñ 

The problem of calculating voltages and currents can be 

solved by using Monte Carlo method, method of 

relaxation, solving linear equations or by calculating 

steady state probabilities of underlying DTMC. The latest 

approach can be implemented in the symbolic model 

checker PRISM. The Markov chain is presented by its 

transition matrix P. If pXY is probability that the walker 

will go from X to Y, then the transition matrix for the 

random walk example (Fig. 1.) is given on the Fig. 2. 
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Fig. 2. Transition matrix P of DTMC 

for the random walk example (Fig. 1.) 

 

For more information on these topics, please see [3]. 

III. PROBABILISTIC SYMBOLIC MODEL CHECKER PRISM 

PRISM is a probabilistic symbolic model checker, a tool 

for formal modeling and analysis of systems, which exhibit 

random or probabilistic behavior. It supports three types of 

probabilistic models: DTMCs, CTMCs and Markov 

decision processes (MDPs), plus extensions of these 

models with costs and rewards. 

The fundamental components of the PRISM language 

are modules and variables. A module contains a number of 

local variables. The values of these variables at any given 

time constitute the state of the module. The behavior of 

each module is described by a set of commands, 

 

[] guard->prob_1:update_1+...+prob_n:update_n (1) 

 

The guard is a predicate over all the variables in the 

model (including those belonging to other modules). Each 

update describes a transition which the module can make 

if the guard is true. A transition is specified by giving the 

new values of the variables in the module, possibly as a 

function of other variables. Each update is also assigned a 

probability (or in some cases a rate) which will be assigned 

to the corresponding transition. 

The random walk example transition matrix (given on 

Fig.2.) described in the PRISM language is shown in Fig.3. 
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dtmc 
 
module M1 

x : [0..5] init 2; 
 
[ ] x=0 -> (x'=0); 
[ ] x=1 -> P10:(x'=0) + P12:(x'=2); 
[ ] x=2 -> P21:(x'=1) + P23:(x'=3); 
[ ] x=3 -> P32:(x'=2) + P34:(x'=4); 
[ ] x=4 -> P43:(x'=3) + P45:(x'=5); 
[ ] x=5 -> (x'=5); 

endmodule 

 

Fig.3. PRISM model of the random walk example (Fig. 1.) 

 

If the voltage source other than unit voltage is to be 

modeled, costs and rewards feature is used like in Fig. 4. 

 
rewards x=5: Va; endrewards 

 

Fig. 4. Usage of costs and rewards in PRISM 

 

In order to analyze a probabilistic model which has been 

specified and constructed in PRISM, it is necessary to 

identify one or more properties of the model which can be 

evaluated by the tool. Properties are expressed in a 

language based on the logics PCTL (for DTMCs and 

MDPs) and Continuous Stochastic Logic (CSL) for 

CTMCs, probabilistic extensions of the CTL. 

The full explanation of property expression available in 

PRISM, exceeds the scope of this article, so please refer to 

[4] and PRISM web-site for more information. 

Although resistive electrical circuits are modeled as 

DTMCs, CTMC PRISM engine will be used, because the 

current release of PRISM does not support the S (“steady 

state”) operator with DTMC models. The reference [6] 

describes the relationship in existence and form of the 

stationary distribution of the irreducible CTMC X with 

those of its embedded DTMC X . This enables us to use 

CTMC model of a resistive circuit in PRISM, providing us 

with the equivalent results for steady state probabilities, 

which represent potentials of nodes in our model. For more 

details, please refer to [6]. 

IV. EXAMPLES AND RESULTS 

A. Proof of concept: a simple example 

In this example, two resistors R1=1.5kW and R2=1kW are 

connected in series to the 5V constant voltage source 

(voltage divider). Furthermore, let the tolerance for these 

resistors be ±1%. The model in PRISM is given on Fig. 5. 

 
ctmc 
 
const R1; 
const R2; 
 
module M1 
 x : [1..3] init 2; 
 
 [] x=1 -> (x'=1); 
 [] x=2 -> 1/R1:(x'=1) + 1/R2:(x'=3); 
 [] x=3 -> (x'=3); 
 
endmodule 
 
rewards x=1 : 5; endrewards 
 

Fig. 5. CTMC PRISM model of the voltage divider 

The const statement defines constants to be used in the 

model, and they can be initialized later, during experiments 

in PRISM. The initial state for the model represents the 

starting point for the random walker. For an example, if we 

want to calculate the potential V2 of node 2, the PRISM 

construct x: [1..3] init 2 will set the initial state to 2. 

Calculating the V2 is done by calculating the following 

property: 

 

R=? [ S ]               (3) 

 

The meaning of the property (3) is: “What is the 

expected reward (i.e., potential in our case) in the steady 

state?”. Within the experiment, we calculate in PRISM 

steady state probabilities for all combinations of resistor 

values R1œ[1485, 1515] and R2œ[990, 1010], with step of 

1W. As it can be seen on Fig. 6., values for potential V2 

belong to the interval V2œ[1.976, 2.024], i.e. it varies 1.2% 

from the nominal value V2=2V. The plot on the Fig. 6. is 

monotone, but should not be misinterpreted as linearly 

dependant on resistor values. The plotted result focuses on 

a very narrow interval of 2-dimensional function domain. 

 
Fig. 6. Potential V2 as a function of resistor values R1, R2 

B. Example 2: Robustness of perturbed system 

Here we describe a more advanced example of the 

modeling and model checking of resistive circuits in 

PRISM. In Example 2, as a difference to the simple model 

from Example 1, we have changes in the referent values 

5V of voltage sources VIN1 and VIN2, as well as variable 

circuit topology, modeled with switches S1 and S2. We will 

analyze circuit behavior under extreme min/max values of 

seven perturbed circuit parameters R1, R2, R3, RS1, RS2, VIN1 

and VIN2. 

On the resistive circuit shown on Fig. 7. there are 3 

resistive loads: R1=6kΩ, R2=4kΩ and R3=5kΩ, all with 

10% tolerances. Resistors R4=R5=R6=R7=R8=R9=10W are 

modeling non-ideal wire resistances. Voltage sources VIN1 

and VIN2 give 4.85V to 5.15V and have RIN1=RIN2=100W 

internal resistance. Loads R2 and R3 can be disconnected 

from the net by two switches having resistance of 1W when 

on, and 1MW when off. The PRISM model is given on Fig. 

8. The results are shown on Fig. 9., where the potential 

values V2 of node 2 are plotted, for all possible 2
7
=128 

combinations of the seven changing parameters. The 
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changes in these parameters are modeled through variables 

kR1, kR2, kR3, kVIN1, kVIN2, kRS1 and kRS2, all taking values 

0 or 1, in order to provide minimum and maximum 

parameter values. 

 
Fig. 7. Resistive circuit from Example 2. 

 
ctmc 
 
const double GIN1=1/100; 
const double GIN2=1/100; 
const double G4=1/10; 
const double G5=1/10; 
const double G6=1/10; 
const double G7=1/10; 
const double G8=1/10; 
const double G9=1/10; 
 
formula G1=1/(5400+ kR1*1200); 
formula G2=1/(3600 + kR2*800); 
formula G3=1/(4500 + kR3*1000); 
formula GS1 = 1/(1 + kRS1*1000000); 
formula GS2 = 1/(1 + kRS2*1000000); 
 
module M1 
 
 x : [0..9]; 
 kR1: [0..1]; kR2: [0..1];  
 kR3: [0..1]; kVIN1: [0..1]; 
 kVIN2: [0..1]; kRS1: [0..1]; 
 kRS2: [0..1]; 
 
 [] x=0 -> x'=0; 
 [] x=1 -> G4:(x'=2) + G9:(x'=5) + GIN1:(x'=6); 
 [] x=2 -> G1:(x'=0) + G4:(x'=1) + G5:(x'=3); 
 [] x=3 -> GS2:(x'=8) + G5:(x'=2) + G6:(x'=4) + 
G8:(x'=5); 
 [] x=4 -> G6:(x'=3) + G7:(x'=5) + GIN2:(x'=7); 
 [] x=5 -> GS1:(x'=9) + G9:(x'=1) + G8:(x'=3) + 
G7:(x'=4); 
 [] x=6 -> x'= 6; 
 [] x=7 -> x'= 7; 
 [] x=8 -> G2:(x'=0) + GS2:(x'= 3); 
 [] x=9 -> G3:(x'=0) + GS1:(x'= 5); 
 
endmodule 
 
rewards 
 x=6: (4.85 + kVIN1*0.3); 
 x=7: (4.85 + kVIN2*0.3); 
endrewards 
 
init true endinit 
 

Fig. 8. PRISM model for circuit on Fig. 7. 

 

The initial state for the model represents the starting 

point for the random walker. We used init true endinit 

construct, which sets all the states as initial, but we will 

specify the true initial state for x later with properties. If 

variables are not initialized, as it is the case with kR1, kR2, 

kR3, kVIN1, kVIN2, kRS1 and kRS2, PRISM will cycle through 

all their possible states. Except for the x-variable, no 

transitions are specified for other 7 variables, so their 

values will remain the same as initial during the random 

walk. 

For an example, properties of interest to be checked can 

be 

R=? [ S {x=2}{min} ]           (4) 

 

Equation (4) means: “In a steady state, what is the 

minimal expected reward the walker will have, starting 

from node 2, every time with different kR1, kR2, kR3, kVIN1, 

kVIN2, kRS1 and kRS2 values?”. Using Claim 1, this value 

equals the minimal potential of the node 2 in the circuit 

from Fig. 7., under all 128 parameter combinations. 

Another property to be verified can be 

 

(x=2) => R>4.67 [ S ] & R<5.12 [ S ]     (5) 

 

Equation (5) means: “In a steady state, is it true that the 

expected reward the walker will have, starting from node 

2, will be between 4.67V and 5.12V, for all possible kR1, 

kR2, kR3, kVIN1, kVIN2, kRS1 and kRS2 combinations?”. If 

satisfied, property (5) guaranties that the potential of node 

2 will stay within the specified boundaries [4.67, 5.12], 

under all 128 experimental setups. Fig. 9. justifies the 

correctness of the results obtained from the verification of 

the statement (5). 

 

 
Fig. 9. Values of V2 for all possible parameter 

combinations 

REFERENCES 

[1]  T. Kropf, Introduction to Formal Hardware Verification, 

Springer; 1999. 

[2]  L. Kolev, “Worst-case tolerance analysis of linear DC and AC 

electric circuits”, Circuits and Systems I: Fundamental Theory and 

Applications, IEEE Transactions on, Volume 49, Issue 12, Dec 2002 

Page(s): 1693 – 1701. 

[3]  P.G. Doyle and J.L. Snell, Random Walks and Electrical 

Networks, Mathematical Assn of America, 1984.  

Available: http://math.dartmouth.edu/~doyle/docs/walks/walks.pdf 

[4]  M. Kwiatkowska, G. Norman and D. Parker, “PRISM: 

Probabilistic Symbolic Model Checker”, In Proc. PAPM/PROBMIV'01 

Tools Session, pages 7-12. Available as Technical Report 760/2001, 

University of Dortmund. September 2001. 

Available: http://www.prismmodelchecker.org  

[5] C. Borgelt and R. Kruse, “Probabilistic Graphical Models for the 

Diagnosis of Analog Electrical Circuits”, in L. Godo (Ed.): ECSQARU 

2005, LNAI 3571, pp. 100–110, 2005. Springer-Verlag Berlin 

Heidelberg 2005.  

Available: 

http://www.springerlink.com/content/83wymce7erquwkdq/fulltext.pdf  

[6] A. Pacheco, Stochastic Manufacturing and Service Systems, Class 

Notes, Spring 2002. 

Available: http://www.math.ist.utl.pt/~mjmorais/CN-2002.pdf  

511


