16th Telecommunications forum TELFOR 2008

Overview of Cross

Serbia, Belgrade, November 25-27, 2008.

-Layer Optimization

Methodologies for Cognitive Radio

M. Bogatinovski, L. Gavrilo

Abstract — This paper presents a short overview of some
cross-layer optimization methodologies for cognitig radio.
Cognitive radio is a relatively new paradigm that prsues the
goal of optimizing network resources or satisfying
user/application preferences, in an intelligent maner. Cross-
layer design and cognitive techniques are combined order
to achieve optimization goals, thus becoming one tie focal
points of interest for the wireless networks reseah
community. Even though there are still open issuesiithese
research areas, as well as in the pertinent practt
implementations, cognitive radio promises to becomea
cornerstone of future wireless communication netwdks.
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I. INTRODUCTION

OGNITIVE radio (CR) using the principles of cross-

layer optimization has gained a significant attemibf
research community in the last few years. Stantiitly the
initial objective of efficient radio spectrum utilition this

new paradigm has evolved to encompass also general

objectives of network usage optimization and/ois$gang
user
Obviously, these are complex tasks that often requi
interventions in the radio system
architectural ~ concepts, introducing  notions
reconfigurability, new interfaces, cognitivity amdiificial
intelligence, as well as optimization algorithméispaper
attempts to provide an introductory overview of so@R
concepts, considered to be important for new rebeas
in this exciting field of wireless communications.

The paper is organized as follows. Chapter Il pfesi
short overview of the CR basics and Chapter Ilisprts
cross-layer design principles. System modellingubject
of Chapter IV, while Chapter
optimization methodologies. Finally, Chapter VI ggvthe
conclusions.
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requirements based on application preferences.

itself with new

V presents some

vskeSenior Member, IEEE

There are different definitions on what a CR présen

J. Mitola Il in his pioneering work, [1], has deéd the
term cognitive radio for wireless devices and neksp
associating it with computational intelligence aboeadio
resources and related communications, in orderetectl
user communication needs and provide most apptepria
radio resources and wireless services.

The author in [2] gives a more specific definitiohCR
that takes into account that cognitive radio is eadnat
improved utilization of the radio spectrum, whil@ [ists
also other viewpoints on CR considered by some
organizations as SDR Forum, [4], and standardimatio
bodies as IEEE Standards Coordinating Committe¢s}.1,

Even though it is difficult to strictly define conam
denominators of different CR viewpoints, one ca the
following characteristics frequently attributedadR:
Environment awarenessthe CR can ,sense" and
probably even model the communication
environment it is operating in, by measuring, for
example, the packet-error-rate, delay, received
signal strength, etc.

Reconfigurability — it can reconfigure system
parameters at different layers of the protocolkstac
(e.g. physical, MAC, network, transport)

Multiradio — different radio technologies and bands
can be made available to the CR (e.g. IEEE
802.11b, GPRS, GSM, etc), with emphasize on
efficient spectrum usage

Decision makindhased on optimization principles —
an ,intelligent* part of the radio can make deciso
based on available knowledge on external
(environmental) parameters, current system
configuration, measurements of the degree of
meeting certain objectives and historical data.
Learning — the ,intelligent* part of the CR can
learn based on past experiences by first recognizin
recurrent contexts and patterns (e.g. daily traffic
patterns at certain location, mobility patterng.etc

The cognitive entity as part of a CR is presentethe
research work under different names, e.g. as a i@agn
Engine [6], Cognitive Radio Engine [7], Cognitive
Resource Manager [8], etc, sometimes denoting rdifite
concepts. Cognitive entities can be centralized or
distributed in every node of the network. A cogiti
network in [9] is defined as a network of nodeshwit
cognitive functionality. Authors in [10] have showvthe
potential of teamwork and collaboration in cogrétiv
wireless networks.

THE BASICS OF COGNITIVE RADIO
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The cognitive radio, apart from the features lisiedve, an effective means for representation of crossrlaye
frequently includes some cross-layer design, ghortinformation (parameters) and the implementation of
presented in the following chapter. optimization strategies in CLD. By keeping techmplo

specific information within each layer while repeasing
ll.  CROSSLAYER DESIGN cross-layer information using generic status (f)izzy

The traditional OSI reference model defines a tiyric variables they try to create a modular, scalabtésample
layered protocol stack, where each layer interachg with  CLD-based architecture.
the adjacent layers and adequate protocols argramsfor There are, of course, many other CLD proposalsdase
the separate layers. This design has shown to wask specific information exchange between certairers
relatively well for the wired communication systensit tailored to satisfy some performance objectives
wireless systems are different because the wiretessum references [13], [15] and [16] give a good overviefv
is a multi-access medium and its features canfgignily some proposals.
vary over time as result of limited resources (ctes) The authors of [17] have shown with examples based

available for transmission, small-scale channelad@ns  gimyation studies that unintended cross-layeméutions
Idue to faldm%, scatlterlng and r(;mlﬂpzzt_h propagatmt;rﬁ can actually have an adverse effect on the oveyaliem
arge-scale channel variations depending on ussati erformance. Therefore, “spaghetti designs” sholod

and interference levels from the surroundings, .[11] . o
Therefore, the concept of cross-layer design (ChB3 p:lj?sl?g(jj and aholistic approachfor CLD should be
| .

been introduced and extensively researched in dse E thouah th . final | -
years. The CLD concept allows protocols at nonajac ven thoug €re IS no linal cross-iayer arc
layers to exchange parameters inherent for theiersa and design adopted yet, it is Qe”era”y believeat the

[12]. This is usually done in order to increaseteys advantages of CLD shown in recent research work,

performance by obtaining a global view on the radi§ombined with cognitive approaches, make it to be of

system and its environment.

the cornerstones of future cognitive radio realfdor

There are many design choices that can be made wifiplementations.

CLD:

- which layers will be chosen to exchange parameters

IV. SYSTEM MODELLING

- which parameters will be selected to be most The purpose of cross-layer optimization is to dutee
influential (largely depending on the performancqhe values of design parameters that will optimize

optimization problem in question)

- how will be the cross-layer interactions performe@jefines

maximize or minimize) anobjective function which
the ultimate goal. The objective function

(e.g. [12] classifies the interactions in threqsometimes also referred to as fitness functiofjtyut
categories — direct communication between layergynction) will depend on whether the optimizatieruser-
a shared database across the layers or trougntric or network-centric [18]. User-centric optimization

completely new abstractions)

focuses on the transmission strategy adaptatidimeatiser

The extreme cross-layer design takes a revolufjonagige, while network-centric one strives to improtre

approach by replacing the traditional layered s$tnes
completely, for task or
implementations [11], [13].

network utility ([18] and references therein). @fte

application-specific gpplication-layerutility is used as performance metric and

optimization goal, which can use other attributashsas

Fig. 1 lists some relevant parameters for croserlaythroughput or latency, depending on the applicatjaf],

optimization. This list is not exhaustive but givesme
examples of candidate parameters.

) Sourcerate, ...

o) TCP congestion window, ...

Network ) Routing protocol, metrics,...
Link/MAC I:> ARQ, back-off timer,
frame size, ...
: Transmit power, frequency,
Ph |
/ ysical \ I:> modulation, ...

Fig. 1. Some relevant parameters that can be pedvid
by different layers, for cross-layer design androjation.

An interesting approach to cross-layer design
presented in [14], where authors argue that fuegyclis
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[20]. Clearly, for real-time applications delayascritical
requirement, for bandwidth-intensive applicationgsithe
throughput, while for sensor networks battery comstion
should be minimized.

In [20] utility is defined as a quantitative, nurioad
expression of the quality of connection measured at
application layer. In general, the utility will depd on
parameters that can be configured locally (Figri) some
stochastic variables used to model end-to-end atiome
(e.g- SNR, bit-error-rate, etc). Therefore, thebfem of
optimization is basically a numerical optimizatiproblem
that in cognitive wireless networks can be solved b
machine learning techniques, [20]. The optimization
problem in case of cognitive wireless radio with[CCls
complex, due to:
existence of many parameters that can be tuned in a
cognitive radio, which makes the search
(configuration) space very large,
deriving analytical expressions for the objectige a

is ) . \
function of the channel conditions is very



challenging, since these functions are norhighly efficient method for finding the optimal or
deterministic and non-linear, [21], [22], acceptably good solution, which can be combinech wit
- wireless channel conditions might be changing, other methods to improve the final result. Howevwaeitjal
- real cognitive wireless networks require to perfornparameters of the algorithm should be carefullysemofor
multi-objective optimization, often with conflicin an effective search.
goals, [22], [8].
The authors of [23] have identified and compared tw B. Genetic Algorithms
types of models for performance characterization: Genetic algorithms belong to the heuristic stodbast
analytical modelsused to derive objective functions andyptimization and global search methodologies, based
black-box modelsused to predict output values of thepe principles of natural selection (see for exanipiL]).
system. _ _ There are many variations of GAs but the common
Analytical modelsare widely present in the researcnngredients of them are: “chromosomes” representictip

work. For example, in [24] a relation for BER (Hgtror- . :
Rate) objective function of AWGN (Additive White P2raMeters in case of CR, genetic operators obeves
and mutation, evaluation function to determine‘dwre

Gaussian Noise) channel is given for different mation . ) .
) 9 i.e. fitness of a chromosome, and selection functlmat

schemes as well as a multi-objective function probl , .
solution through weighted sum approach. In [25% akso chooses the chromosomes that will survive to thet ne
' generation based on their scores. Thus, at eaphtlste

[7], the cognitive engine deals with maximizatidnnoisy :
channel capacity for which an analytical model AWGN algorithm selects chromosomes from the current
channel is presented. An application-oriented dhjec Population that will serve as a base (parents) remte
function for video-streaming over wireless networks Cchromosomes of the next generation (children). resr
employed in [26], where an analytical model for rgee function combines two parent chromosomes to form
PSNR (Peak Signal-to-Noise Ratio) of all userseisvéd.  children for the next generation. Mutation functimakes

On the other hand, the authors of [23] stress thehanges to individual parents to form children. rEhare
advantages of theblack-box modelsand show the many choices that control the performance of a €4,
applicability of Multilayer Feedforward Neural Netvks the selection, crossover, mutation function, ihitia
with good modelling accuracy for this purpose. T30 population. The choice of initial population of
list and shortly discuss some other black-box n®&d@lr  chromosomes is very important for fast convergesfaae

example Hidden Markov Models, linear models an@igorithm - [32] proposes a specific method forsthi
regression techniques for non-linear modes. purpose.

The benefit of using GAs for solving optimizationda
control problems in CR area has already been sHmoyvn

The CR has to perform optimizations in an intetige many researchers (e.g. [22], [24], [33], etc).
cognitive way, dealing with many input parameteften
sa?isfying mu)I/tipIe obj%ctives in t%/e c?)ndipt)ionsabfanging C. Neural Networks
characteristics of the wireless channel. Therefooeverful Artificial neural networks (NN) offer an effectivéata
optimization techniques combined with machine lemyn modelling mechanism able to model complex (linead a
approaches are promising candidates for optimigatiowon-linear) input/output relationships and to lednese
methodologies, [20]. A good overview of cognitiverelationships by training (see for example [34Feduently
techniques for cross-layer optimization is given[15]. used for this purpose is a Multilayer Feedforwartl N
Four optimization methods have been selected to PRIFNN), a supervised network that requires a known
shortly presented in this paper, due to their céipaior  desired output in order to learn. Learning in tdse is a
fulfilling specific optimization tasks. process of determining the optimal combination etixork

A. Simulated Annealing weights (internal parameters) so that the network

approximates a given function (input/output relasiip).

Simulated annealing (SA) and genetic algorithms XGATraining algorithms that are frequently used arer f
can deal with multidimensional optimizations Wher%xample, gradient descent back-propagation (GDBP),
traditional numerical methods might not be fast a”eonjugate GDBP, Levenberg-Marquardt algorithm, &ic.
scalable enough if applied to the full dataset ][27¢5me cases also GAs can be used to train the neural

ﬁirlnulated e;]nnealigg, seg fqr examplﬁ [|28] ) and [2911etwork. Common issues with NN modelling are design
elongs to the random (adaptive) search aigor € the network (e.g. number of layers), initializingpet
a random walk through the solution space govermes th

search towards an optimal solution. It mimics tla¢ural w.eights,“ defipipg ”the learning rules, avoiding loca
processes of controlled cooling of a material. 8oathm minima, ove_rf|tt|ng o . . .
frequently avoids local minima by accepting, withme The learning capability of a .MFNN in cogr.1|t|-ve radi
probability, also changes in the search spacewioasen has been shown, for example, in [23], where itsedufor
the objective function score. This probability isr€@l-time modelling based on measurements.
proportional to the “temperature” control parametiesit  p  Fuzzy Logic

decreases as the algorithm proceeds. There are als
adaptations that improve the performance of therahgn,
(e.g. [30]). The advantage of SA is that it is mpe and

V. OPTIMIZATION METHODOLOGIES

fn fuzzy logic (FL) the degree of truth of a statsmis
not crisp, similarly to the degree of membershiphini a
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set in fuzzy set theory. FL is based on reasoniogecto

humans which make decisions based on often imgrecis

and approximate input information. It uses the intguat

notions of membership functions, linguistic varegdl a
rule base and an inference procedure. For a more
elaborated view on FL and fuzzy set theory see, f(E[7]

example, [35].

Fuzzy logic is a promising research topic for crlager
optimization in wireless networks. For example[36] it
has been used for specific cross-layer designgevihi[14]

it is shown how it can be used for generic knowkedgl19]
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representation of cross-layer information and bogd
controllers in CR.

VI. CONCLUSIONS

There is still a way to go for the cognitive ratlioreach
standard implementations and get to the commercial
market, but research community is on the rightiirdtere
is a tremendous work performed in the broad areaass-

layer optimization
already delivering promising results that have te b

involving different methodologie

worked-out and channelized through the standaidizat
bodies.
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