
  
Abstract — This paper presents a short overview of some 

cross-layer optimization methodologies for cognitive radio. 
Cognitive radio is a relatively new paradigm that pursues the 
goal of optimizing network resources or satisfying 
user/application preferences, in an intelligent manner. Cross-
layer design and cognitive techniques are combined in order 
to achieve optimization goals, thus becoming one of the focal 
points of interest for the wireless networks research 
community. Even though there are still open issues in these 
research areas, as well as in the pertinent practical 
implementations, cognitive radio promises to become a 
cornerstone of future wireless communication networks. 
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I. INTRODUCTION 

OGNITIVE radio (CR) using the principles of cross-
layer optimization has gained a significant attention of 

research community in the last few years. Starting with the 
initial objective of efficient radio spectrum utilization this 
new paradigm has evolved to encompass also general 
objectives of network usage optimization and/or satisfying 
user requirements based on application preferences. 
Obviously, these are complex tasks that often require 
interventions in the radio system itself with new 
architectural concepts, introducing notions of 
reconfigurability, new interfaces, cognitivity and artificial 
intelligence, as well as optimization algorithms. This paper 
attempts to provide an introductory overview of some CR 
concepts, considered to be important for new researchers 
in this exciting field of wireless communications. 

The paper is organized as follows. Chapter II provides 
short overview of the CR basics and Chapter III presents 
cross-layer design principles. System modelling is subject 
of Chapter IV, while Chapter V presents some 
optimization methodologies. Finally, Chapter VI gives the 
conclusions.  
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II.  THE BASICS OF COGNITIVE RADIO 

There are different definitions on what a CR presents.  
J. Mitola III in his pioneering work, [1], has defined the 

term cognitive radio for wireless devices and networks, 
associating it with computational intelligence about radio 
resources and related communications, in order to detect 
user communication needs and provide most appropriate 
radio resources and wireless services. 

The author in [2] gives a more specific definition of CR 
that takes into account that cognitive radio is aimed at 
improved utilization of the radio spectrum, while [3] lists 
also other viewpoints on CR considered by some 
organizations as SDR Forum, [4], and standardization 
bodies as IEEE Standards Coordinating Committee 41, [5].   

Even though it is difficult to strictly define common 
denominators of different CR viewpoints, one can list the 
following characteristics frequently attributed to a CR: 

- Environment awareness - the CR can „sense“ and 
probably even model the communication 
environment it is operating in, by measuring, for 
example, the packet-error-rate, delay, received 
signal strength, etc. 

- Reconfigurability – it can reconfigure system 
parameters at different layers of the protocol stack 
(e.g. physical, MAC, network, transport) 

- Multiradio – different radio technologies and bands 
can be made available to the CR (e.g. IEEE 
802.11b, GPRS, GSM, etc), with emphasize on 
efficient spectrum usage 

- Decision making based on optimization principles – 
an „intelligent“ part of the radio can make decisions 
based on available knowledge on external 
(environmental) parameters, current system 
configuration, measurements of the degree of 
meeting certain objectives and historical data. 

- Learning – the „intelligent“ part of the CR can 
learn based on past experiences by first recognizing 
recurrent contexts and patterns (e.g. daily traffic 
patterns at certain location, mobility patterns etc). 

The cognitive entity as part of a CR is presented in the 
research work under different names, e.g. as a Cognitive 
Engine [6], Cognitive Radio Engine [7], Cognitive 
Resource Manager [8], etc, sometimes denoting different 
concepts. Cognitive entities can be centralized or 
distributed in every node of the network. A cognitive 
network in [9] is defined as a network of nodes with 
cognitive functionality. Authors in [10] have shown the 
potential of teamwork and collaboration in cognitive 
wireless networks. 
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The cognitive radio, apart from the features listed above, 
frequently includes some cross-layer design, shortly 
presented in the following chapter. 

III.  CROSS-LAYER DESIGN 

The traditional OSI reference model defines a strictly 
layered protocol stack, where each layer interacts only with 
the adjacent layers and adequate protocols are designed for 
the separate layers. This design has shown to work 
relatively well for the wired communication systems, but 
wireless systems are different because the wireless medium 
is a multi-access medium and its features can significantly 
vary over time as result of limited resources (channels) 
available for transmission, small-scale channel variations 
due to fading, scattering and multipath propagation, and 
large-scale channel variations depending on user location 
and interference levels from the surroundings, [11]. 
Therefore, the concept of cross-layer design (CLD) has 
been introduced and extensively researched in the last 
years. The CLD concept allows protocols at nonadjacent 
layers to exchange parameters inherent for their layers, 
[12]. This is usually done in order to increase system 
performance by obtaining a global view on the radio 
system and its environment. 

There are many design choices that can be made with 
CLD: 

- which layers will be chosen to exchange parameters  
- which parameters will be selected to be most 

influential (largely depending on the performance 
optimization problem in question) 

- how will be the cross-layer interactions performed 
(e.g. [12] classifies the interactions in three 
categories – direct communication between layers, 
a shared database across the layers or trough 
completely new abstractions) 

The extreme cross-layer design takes a revolutionary 
approach by replacing the traditional layered structures 
completely, for task or application-specific 
implementations [11], [13].  

Fig. 1 lists some relevant parameters for cross-layer 
optimization. This list is not exhaustive but gives some 
examples of candidate parameters. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Some relevant parameters that can be provided 
by different layers, for cross-layer design and optimization. 

 
An interesting approach to cross-layer design is 

presented in [14], where authors argue that fuzzy logic is 

an effective means for representation of cross-layer 
information (parameters) and the implementation of 
optimization strategies in CLD. By keeping technology-
specific information within each layer while representing 
cross-layer information using generic status (fuzzy) 
variables they try to create a modular, scalable and simple 
CLD-based architecture. 

There are, of course, many other CLD proposals based 
on specific information exchange between certain layers 
tailored to satisfy some performance objectives – 
references [13], [15] and [16] give a good overview of 
some proposals.  

The authors of [17] have shown with examples based on 
simulation studies that unintended cross-layer interactions 
can actually have an adverse effect on the overall system 
performance. Therefore, “spaghetti designs” should be 
avoided and a holistic approach for CLD should be 
pursued. 

Even though there is no final cross-layer architecture 
and design adopted yet, it is generally believed that the 
advantages of CLD shown in recent research work, 
combined with cognitive approaches, make it to be one of 
the cornerstones of future cognitive radio real-world 
implementations. 

IV.  SYSTEM MODELLING 

The purpose of cross-layer optimization is to determine 
the values of design parameters that will optimize 
(maximize or minimize) an objective function, which 
defines the ultimate goal. The objective function 
(sometimes also referred to as fitness function, utility 
function) will depend on whether the optimization is user-
centric or network-centric, [18]. User-centric optimization 
focuses on the transmission strategy adaptation at the user 
side, while network-centric one strives to improve the 
network utility ([18] and references therein). Often, 
application-layer utility is used as performance metric and 
optimization goal, which can use other attributes such as 
throughput or latency, depending on the application, [19], 
[20]. Clearly, for real-time applications delay is a critical 
requirement, for bandwidth-intensive applications it is the 
throughput, while for sensor networks battery consumption 
should be minimized. 

In [20] utility is defined as a quantitative, numerical 
expression of the quality of connection measured at 
application layer. In general, the utility will depend on 
parameters that can be configured locally (Fig.1) and some 
stochastic variables used to model end-to-end connection 
(e.g. SNR, bit-error-rate, etc). Therefore, the problem of 
optimization is basically a numerical optimization problem 
that in cognitive wireless networks can be solved by 
machine learning techniques, [20]. The optimization 
problem in case of cognitive wireless radio with CLD is 
complex, due to: 

- existence of many parameters that can be tuned in a 
cognitive radio, which makes the search 
(configuration) space very large, 

- deriving analytical expressions for the objective as 
function of the channel conditions is very 
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challenging, since these functions are non-
deterministic and non-linear, [21], [22], 

- wireless channel conditions might be changing, 
- real cognitive wireless networks require to perform 

multi-objective optimization, often with conflicting 
goals, [22], [8]. 

The authors of [23] have identified and compared two 
types of models for performance characterization: 
analytical models used to derive objective functions and 
black-box models used to predict output values of the 
system. 

Analytical models are widely present in the research 
work. For example, in [24] a relation for BER (Bit-Error-
Rate) objective function of AWGN (Additive White 
Gaussian Noise) channel is given for different modulation 
schemes as well as a multi-objective function problem 
solution through weighted sum approach. In [25], see also 
[7], the cognitive engine deals with maximization of noisy 
channel capacity for which an analytical model for AWGN 
channel is presented. An application-oriented objective 
function for video-streaming over wireless networks is 
employed in [26], where an analytical model for average 
PSNR (Peak Signal-to-Noise Ratio) of all users is derived. 

On the other hand, the authors of [23] stress the 
advantages of the black-box models and show the 
applicability of Multilayer Feedforward Neural Networks 
with good modelling accuracy for this purpose. They also 
list and shortly discuss some other black-box models, for 
example Hidden Markov Models, linear models and 
regression techniques for non-linear modes. 

V. OPTIMIZATION METHODOLOGIES 

The CR has to perform optimizations in an intelligent, 
cognitive way, dealing with many input parameters, often 
satisfying multiple objectives in the conditions of changing 
characteristics of the wireless channel. Therefore, powerful 
optimization techniques combined with machine learning 
approaches are promising candidates for optimization 
methodologies, [20]. A good overview of cognitive 
techniques for cross-layer optimization is given in [15]. 
Four optimization methods have been selected to be 
shortly presented in this paper, due to their capability for 
fulfilling specific optimization tasks. 

A. Simulated Annealing 

Simulated annealing (SA) and genetic algorithms (GA) 
can deal with multidimensional optimizations where 
traditional numerical methods might not be fast and 
scalable enough if applied to the full dataset, [27]. 
Simulated annealing, see for example [28] and [29], 
belongs to the random (adaptive) search algorithms where 
a random walk through the solution space governs the 
search towards an optimal solution. It mimics the natural 
processes of controlled cooling of a material. SA algorithm 
frequently avoids local minima by accepting, with some 
probability, also changes in the search space that worsen 
the objective function score. This probability is 
proportional to the “temperature” control parameter that 
decreases as the algorithm proceeds. There are also 
adaptations that improve the performance of the algorithm, 
(e.g. [30]). The advantage of SA is that it is a simple and 

highly efficient method for finding the optimal or 
acceptably good solution, which can be combined with 
other methods to improve the final result. However, initial 
parameters of the algorithm should be carefully chosen for 
an effective search. 

B. Genetic Algorithms 

Genetic algorithms belong to the heuristic stochastic 
optimization and global search methodologies, based on 
the principles of natural selection (see for example [31]). 
There are many variations of GAs but the common 
ingredients of them are: “chromosomes” representing radio 
parameters in case of CR, genetic operators of crossover 
and mutation, evaluation function to determine the “score” 
i.e. fitness of a chromosome, and selection function that 
chooses the chromosomes that will survive to the next 
generation based on their scores. Thus, at each step the 
algorithm selects chromosomes from the current 
population that will serve as a base (parents) to create 
chromosomes of the next generation (children). Crossover 
function combines two parent chromosomes to form 
children for the next generation. Mutation function makes 
changes to individual parents to form children. There are 
many choices that control the performance of a GA, e.g. 
the selection, crossover, mutation function, initial 
population. The choice of initial population of 
chromosomes is very important for fast convergence of the 
algorithm - [32] proposes a specific method for this 
purpose. 

The benefit of using GAs for solving optimization and 
control problems in CR area has already been shown by 
many researchers (e.g. [22], [24], [33], etc). 

C. Neural Networks 

Artificial neural networks (NN) offer an effective data 
modelling mechanism able to model complex (linear and 
non-linear) input/output relationships and to learn these 
relationships by training (see for example [34]). Frequently 
used for this purpose is a Multilayer Feedforward NN 
(MFNN), a supervised network that requires a known 
desired output in order to learn. Learning in this case is a 
process of determining the optimal combination of network 
weights (internal parameters) so that the network 
approximates a given function (input/output relationship). 
Training algorithms that are frequently used are, for 
example, gradient descent back-propagation (GDBP), 
conjugate GDBP, Levenberg-Marquardt algorithm, etc. In 
some cases also GAs can be used to train the neural 
network. Common issues with NN modelling are designing 
the network (e.g. number of layers), initializing the 
weights, defining the learning rules, avoiding local 
minima, “overfitting”. 

The learning capability of a MFNN in cognitive radio 
has been shown, for example, in [23], where it is used for 
real-time modelling based on measurements. 

D. Fuzzy Logic 

In fuzzy logic (FL) the degree of truth of a statement is 
not crisp, similarly to the degree of membership within a 
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set in fuzzy set theory. FL is based on reasoning close to 
humans which make decisions based on often imprecise 
and approximate input information. It uses the important 
notions of membership functions, linguistic variables, a 
rule base and an inference procedure. For a more 
elaborated view on FL and fuzzy set theory see, for 
example, [35]. 

Fuzzy logic is a promising research topic for cross-layer 
optimization in wireless networks. For example, in [36] it 
has been used for specific cross-layer design, while in [14] 
it is shown how it can be used for generic knowledge 
representation of cross-layer information and building 
controllers in CR. 

VI.  CONCLUSIONS 

There is still a way to go for the cognitive radio to reach 
standard implementations and get to the commercial 
market, but research community is on the right track. There 
is a tremendous work performed in the broad area of cross-
layer optimization involving different methodologies, 
already delivering promising results that have to be 
worked-out and channelized through the standardization 
bodies. 
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