
  

  

Abstract — An adaptive version of Early Random Drop 

(AERD) is introduced to control the queueing delay in real-

time multimedia applications to satisfy a user’s quality of 

service requirements by dynamically moving a queue 

threshold. The aim is to keep queueing delay bounded as the 

arrival rate varies. 
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I. INTRODUCTION 

ARLY Random Drop (ERD) is a major modification of 

the Drop Tail (DT) algorithm and was designed to 

overcome the failures of DT as well as predicting 

congestion before it occurs. Basically ERD functions as a 

congestion avoidance mechanism instead of reaction after 

congestion occurs as in DT. The ERD mechanism consists 

of three basic steps: a) Predict congestion before it occurs. 

b) Identify the users contributing to this congestion. c) 

Signal these users to slow down [1]. ERD detects 

congestion when the instantaneous queue size reaches a 

drop level.  This level indicates that a congestion period 

and we will feedback this information is fed back to the 

sources by dropping all new arriving packets with a fixed 

probability until the instantaneous queue size drops below 

the drop level [1] [2]. 

ERD has a better overview of the network traffic than 

DT, and has achieved a good overall network performance 

and provided a fair service to the network by reducing 

global synchronization in the network [1].  

ERD succeeds in preventing the queue from overflowing 

by monitoring it constantly and this early detection 

improve fairness among network users by detecting 

aggressive users more accurately instead of warning all 

users to slow down. However the performance of ERD is 

still questionable as this success depends on the suitability 

of the Drop Level and Drop Probability to the current 

network traffic distribution [1]. 

In [1] Hesham suggested that improving the ERD 

algorithm to suit any network traffic could be achieved by 

implementing a dynamic adjustment of the Drop Level and 

the Drop Probability.  Many research papers in the 

literature have already studied the development of dynamic 

adjustment of the drop probability such as RED [2], ARED 
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[4]. These developments are dependent on the average 

queue size where the packet-marking probability varies 

linearly from 0 to maximum probability maxp as in RED 

[2] or they adjust the maximum packet dropping 

probability to adapt to changes in the mean queue length as 

in ARED [4], but none of theses methods specifically 

focuses on dynamically adjusting the drop level as traffic 

parameters change over time. 

II. DESIGN ANLYSIS 

A. Threshold position 

The threshold L in the queue specifies the limit of the 

safe traffic area. Moreover choosing the threshold position 

is a very important design issue as it also specifies how 

much time is needed to signal the aggressive users to slow 

down. The aim of the system is to keep the end-to-end 

delay bounded at a specified value. Thus the threshold 

value should depend on the largest end-to-end delay of a 

user, but as there are multi users in one gateway and each 

of these user’s has a different round-trip delay [1], so the 

threshold should be adjusted dynamically and this depends 

on the required delay in the gateway. It might argued that 

the threshold value should be set to a small value but that 

would not be possible simply because it might cause 

unnecessary packet losses.  

B. Traffic source 

It is very crucial to use a traffic model that emulates real 

network traffic in a realistic way. It is not be possible to 

test a system effectively without using a traffic source that 

represent and performs like real internet traffic. Therefore, 

a two state Markov Modulated Poisson Process (MMPP) 

traffic model was used to represent the underlying 

characteristics of a TCP flows. That is sudden switched in 

the arrival rate of a two-state MMPP source produce a 

similar effect to the sudden switches in arrival rate of a 

TCP source when congestion window is increased or 

decreased by a factor of two. 

The MMPP-2 source is a Poisson process whose rate is a 

random process which varies according to an irreducible 2-

state Markov chain. The MMPP is an extension of the 

Poisson process and is generally used as the input model of 

communication systems such as data traffic systems [3].  

The MMPP traffic is fed in the queue with two different 

arrival rates. Each two state MMPP is representative of a 

TCP connection and consists of a sequence of data packets 

with different arrival rate.  
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C. Control mechanism  

 A continuous-time framework is used to model the 

queue and the time has been divided into time windows, 

where the round trip time RTT is less then one time-

window.  

 Figure (1) shows the control feedback diagram. It is 

assumed that the RTT from the arrival process to queue 

and back to the arrival process through the delay controller 

is less the one time-window thus the arrival process can be 

considered to switch from one time-window to the next.   

According to Guan[7] The following equation: 

11 2 −+ +−= kkrk GDDD   (1)                                               

Equation (1) is used to calculate the predicted mean delay 

in the next time window k+1 where
rD is the required delay 

which is a fixed value, 
kD is the measured delay in the 

current time window and 
1−kG  is the measured delay error in 

the previous time window k-1. 

 
Fig. 1. Control system diagram 

Once the predicted target mean delay in the next time-

window k+1 has been calculated, the next step is to 

analyse the queue transition states to find the relation 

between the predicated target mean delay in the next time 

window and the position of the  threshold for the next 

time-window 
1+kL  in order to achieve the predicted delay.  

In the next section a queueing analysis is carried out to 

find the drop value position
1+kL . 

D. Queue analysis 

The queue accommodates limited numbers of packets K; 

this number of packets includes any packet in the system 

server. The queue drop level or threshold is at position L. 

If the number of packets in the queue reaches the 

threshold, every new packet arriving to the queue is 

dropped with fixed probability. If the number of packets 

reaches the buffer size, all new arriving packets will be 

dropped and the source is signaled to stop sending packets 

by the feedback mechanism. Otherwise the source operates 

at normal sending rate [1]. The scheduling scheme of the 

queue is FCFS (First come first serve). 

Figure (2) shows the arrival rate in each part of the queue 

when the arrival rate changes in the queue depending on 

the actual queue size. 

As mentioned previously, an MMPP-2 is used for the 

arrival process and this MMPP-2 has two different arrival 

rates 
1λ and

2λ . The queueing model has three parts, the 

first part being when the number of packets is less then the 

drop level L in this part the arrival rate are 
1λ or 

2λ  

depends on the sending state. The effective arrival rate 

(arrival rate-drop rate) changes to 1
'λ or 2

'λ  when the 

number of packets reaches the drop line or threshold L and 

the dropping probability Pd will be used to randomly drop 

packets form the queue to signal the source to slow down. 

The last part is when the number of packets is larger than 

the queue capacity and so the effective arrival rate will be 

zero, where all packets will be dropped and the source will 

be signaled to stop sending [5][7]. 

Equations (2) and (3) show the dropping probability for 

state1 and state2 subsequently. 
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Again the mean queue length and the mean arrival rate 

are measured over each time window k, then these are used 

to compute the position of the threshold L for the next 

time-window k+1 in order to  keep the delay at the 

required value [5][7]. 

The state diagram of the system is shown in figure (2).  

Since it has been assumed the mean time in each state of 

the arrival process is much larger than a time window, then 

this justifies the assumption that the system reaches a 

steady state before the next change in the arrival rate (at 

least on average) and we can thus model the system as a 

M/M/1/L queue.  

 
Fig. 2. Transition states 

We measure the mean queue length (MQL) )( kx and 

the mean arrival rate )(kλ  over each time window k and 

their value is used to relocate the threshold for the next 

time-window k +1 to keep the delay at the required value.  

In the case of M/M/1/L queue, the balance equations are 

divided into three parts: 

States 0, 1…. L 

)1()( += kPkP µλ                                                     (4) 

Here k represents the states in the system from state 0 to 

state L. 

)()1( kPkP
µ

λ
=+

   k=0, 1, …..L                                     (5) 

The system is in equilibrium in this part of the queue 

and there are no dropped packets. The probabilities are as 

follow:  

)0()1( PP
µ

λ
=

                                                                 (6)                                  

As the system is equilibrium the summation of the 

probabilities is equal to one. The general form of the 

probability is this part of the queue is:  
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)0()( PkP kρ=                                                               (7) 

States L+1 …….K 

In this part of the queue the there is a packet dropping 

probability in the system where the arrival rate changes 

from 1λ  or 2λ to 
'

1λ or 
'

2λ  depending on the arrival 

state. The state probabilities in this part of the queue are as 

follows: 

 

)1()(' += LPLP µλ                                                      (8) 

)1()( −= LPLP
µ

λ
Q

                                                     (9) 

The probability in state L is:  

)0()( PLP
Lρ=                                                         (10) 

')()1( λµ LPLP =+                                                       (11)                                                                                                 

And the probability in state L+1 is: 

)0(
'

)1( PLP Lρ
µ

λ
=+

                                                (12)                                                                                            

The general form for the probabilities in this part of the 

queue is: 

)0()()()( '
PiLP

Li ρρ=+ , i=0,…,K                    (13)                                                   

Here i corresponds to the states in the system from state 

L+1 to the capacity of the system at state K. 
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Summing the series: 
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Now let KLi ,.......1+= and 

let )1(.),........1( +−+−= LKLij . This makes 

)1(,......0 +−= LKj by using an appropriate summation of 

series: 
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Using equations (16) and (17) 
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Now we have to find the value of P(0) needs to be found. 
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Then  
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Both the mean queue length )(kx and the mean arrival 

rate )(kλ are measured over each time window k in the 

simulation. The value of )( kλ is used to calculate the 

threshold position for the next time window 
1+kL  to 

maintain the delay at the required value. By using Little’s 

law the mean delay in each time window can be obtained 

as show in equation (21). After computing
k

D , 
1−k

G  and the 

required delay 
rD  is a constant, then these values can be 

used in equation (1) to find the value of the predicted mean 

delay in the next time window k+1. Once the predicated 

value for the mean delay in next time window k+1 is 

known the next step is to find a function for the threshold 

position 1+kL to maintain the mean delay in time window 

k+1 at the required value.  
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The bisection method is then used in our simulation to 

find the roots of equation (21) in order to find the 

threshold position for the next time window k+1 and 

subsequently adjust the threshold to the new position in an 

attempt to maintain the delay at the required value.  

III. SIMULATION RESULTS 

  A Java framework simulation is used in conjunction 

with the bisection method to find the roots of equation (21) 

to relocate the position of the threshold at the end of each 

time window to keep the delay in next time window at a 

specified value. 

The parameters of the simulation are as shown below: 

The required delay (
rD )= 6ms, Arrival rate MMPP-2 state 

one (
1λ )= 0.2, Arrival rate in MMPP-2 State two(

2λ )=0.4, 

Transition rate in state one(
1γ )=0.01,  Transition rate in 

state two(
2γ )=0.02, Time window length(TW )= 20ms, 

Dropping probability(
dP )=0.02, Service rate( µ )= 0.04 and  

Queue capacity ( K)=15.  

Hesham [1] suggested that the drop probability should 

be adjusted dynamically, depending on network traffic. 

However the purpose of this paper is to test the 

performance of the feedback mechanism rather than the 

performance of the entire network. Therefore we choose 

dropping probability 0.02 as recommended by Zhang in [6] 

although this version of Early Random Drop was not 

successful in controlling greedy users. We do not expect 

this modified version of early random Drop to solve all the 

problems of misbehaving users and other traffic problems 

but the goal of this Adaptive Early Random Drop (AERD) 

is to control the delay in the gateway. 

The results of the above simulation are as shown in 

figure (3). The measured delay is fluctuates around the 

required delay as expected with variance (between 

measured and required delay) 0.965342. In the next step 

the time window length TW is changed in attempt to 

achieve a lower variance. 

Measured Delay Vs. Required Delay

0

2

4

6

8

10

1 105 209 313 417 521 625 729 833 937 1041 1145 1249 1353

Time Window (TW)

D
e

la
y

 V
a

lu
e

Measured Delay Required Delay

 
Fig. 3. Measured Delay vs. Required Delay at TW=20 
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Increasing the time window length to 25 gives the 

results in figure (4). The results have improved as the 

mean delay was maintained around the required delay and 

the variance is reduced to 0.847466. 
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Fig. 4. Measured Delay vs. Required Delay at TW=25 

From the results in figure (3) and (4) clearly the 

variance depends on the length of time-window, therefore 

it is crucial to find the optimum length of the time-window. 

In an attempt to obtain the optimum time-window the delay 

variance is plotted against time window length, as shown 

in Figure (5). 
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Fig. 5. Variance of Delay vs. Time window length 

The measurement of the variance recorded  high values 

at small sizes of time window then the value of variance 

decreases dramatically till it reaches the lowest value at 

time window length = 23, then it increases again. 

In further attempt to lower the variance n previous time 

windows are used to predict the delay in next time window 

k+1. The number of time windows used is n= 2, 3, 4 .. and 

the variance in each case was obtained until the best value 

of the delay variance was achieved. 
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Fig. 6. Delay Variance Vs Different Number of Time 

Windows (n) 

With n =2 the variance of delay is 0.324266, then when 

we increase the number of pervious time windows to three 

n=3 the variance has decreased to 0.12673. From that we 

could say that the variance decreased by increasing the 

number of the previous time windows n. However this is 

not always true as the delay variance has increased again 

with four previous time windows n=4. It is crucial to work 

out the optimum length of the time window therefore we 

plot a delay variance versus time length as illustrated in 

figure (6), which shows the lowest value of variance was at 

number of time windows n= 3. 

IV. CONCLUSION 

In this paper an adaptive version of Early Random Drop 

(AERD) has been introduced to maintain the mean 

queueing delay. The aim of this method is to satisfy the 

real-time multimedia application user’s quality of service 

requirements. 

  The new AERD uses a dynamic threshold that can be 

adjusted with the aim of keeping the queueing delay in a 

finite buffer bounded at a specified value as the arrival rate 

changes over time. 

The focus was on buffer delay which is a significant 

component of End-to-End Delay, and the disadvantages of 

the traditional Early Random Drop (ERD) have largely 

been eliminated by adding a dynamic threshold to the 

system instead of just using a static threshold value. An 

analytical model delay equation was also developed for an 

M/M/1/L queue. This equation has been used in the 

simulation in conjunction the bisection method to adjust 

the threshold to an effective value to maintain the delay 

around a specified value. 

We have noticed that the accuracy of the results depends 

critically on accurate measurements of arrival rate. 

Optimum values have been obtained for time window 

length and number of time windows to use in the delay 

measurements for the parameters used, although further 

investigations would be required to determine the 

generality of these results if the system parameters (arrival 

rates and service rate) are changed. 
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