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destination nodes is used for the encoding process.
Abstract— In this paper, we investigate the possibilities of Another fundamental difference between the twohist t
developing and applying reduced complexity networlcoding  fountain codes employ sparse linear equations biitary
schemes. The proposed schemes are motivated by miCe .,efficients as their encoded data, decoded by leimp

developments in the field of sparse-graph erasureodes and . . . . o
the iterative decoding algorithms. Performances oflow- linear-time iterative BP decoder at the destinatidnereas

complexity network coding schemes deployed for theurpose @S @ result of network coding operation, the resrsiare
of data collection in wireless sensor networks arenalyzed by supplied by a standard, non-sparse, linear equsatioth
means of the simulation experiments. coefficients from a selected finite field, decodey the
cubic complexity Gaussian elimination decoding. The
Keywords— Data Collection, Network Coding, Wireless simplicity and complexity advantages of the fountai
Sensor Networks. approach, and network capacity utilization advaesagf
network coding, motivates the idea of combining tive
schemes, particularly in  reduced functionality
N the landmark paper [1], Ahlswede et al. establish environments such as wireless sensor networks,hwilic
the multicast capacity of a network of lossles&dirand  the direction we follow in this paper.

introduced a technique named network coding, as a

generalization of routing, necessary to achieve the Il. PrACTICAL NETWORK CODING SCHEMES
multicast capacity. Introduction of network coding
paradigm into communication networks created a wHve
theoretical research on this topic, followed by avev of
research that analyzes possibilities for its apgbns in
the real-world scenarios. In this paper, we ingedé the
possibilities of developing and applying reduce
complexity network coding schemes, motivated byedl w
developed sparse-graph  erasure codes theo
Performances of low-complexity network coding schem
deployed for the purpose of data collection in ieise

C
sensor networks (WSN) are analyzed by means of §i6 o1y element withl-bit block is performed ag(2%

S'm“'F"j‘r“O':iexlpf”rTje?;?é 4 network coding framewori (€10 Multiplication of the field element with eadf L
) actical randomized: hetwork coding framewo Sconsecutive, non-overlapping;bit segments of thébit
first described in [2]. In a certain sense, it slsama

. ) . block. Each node performs distributed randomizedadr
common ground with the recently popular idea ofnfain network coding on the set & coded blocks: = [c, ¢
coding developed in coding theory [3][4]. Both are 9 b 2

A . . ..., tv] contained in its memory (the blocks received so
developed for single-source multicast setting otlee l  (

far), or on the set of source blodksn case of the source
packet based networks, where the data generatée at nO()de Each eniodedsblltj)ckis of thse sarsne len thsa: the
source node should be available at the destinaibmes. : 9

) . . : .~ source blocks and is transmitted together withvietorg
In fountain coding scenario, the data encoding gseds

. of its global encoding coefficients= [91, G2, ..., O, G O
performed only at the source node and data multcas R :
be understood as a set of erasure channels witretit F(2), such that ¢ = gb'. It is assumed that | << kg, which

L makes the size of the overhead g acceptable. Every nodein
erasure statistics between the source node and egc out :

S : e network sends encoded blocks ¢ concatenated with
destination node. In the network coding scenarie t

. . Out . . .

whole network between the source and the set bt? globdl encod|_n g. vectors g .on Its outgomg links
whenever transmission opportunity occurs, using the
following encoding rule;

The work presented in this paper is supported i Ipathe applied  Creating encoded block cout Randomly select m< M
research project No. 11022/08, awarded by the Minaf Science and . _ N
Technology, Rep. of Serbia. field elementsy = [y, Vs, ..., Y] and form a random

. INTRODUCTION

In this subsection, we describe the standard factpal
implementation of network coding schemes, as desdri
in [2]. The source data, residing in the source enod
memory, is divided int& data blockd = [by, b, ..., b] of
lengthl bits, wherd is typically a whole number of bytes.
Y he base finite fieldr(2% of size 2 is selected; typicallg
equal to 8 or 16 in practical scenarios. It is as=t thatg
vides | so we can segment each data block into a
sequence of Lig elements fronfF(2%. Each field element
an be represented gshit sequence. Multiplication ai-
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+ Calculating global encoding vecta®™: Multiply randomly distributed over a unit square area. Emisor
vectory with m x K matrix containing as its rows theis equipped with a wireless communication capaédit

global encoding vectors g, 9’ ..., g'm] that enable reliable data transmission betweers¢msor
corresponding to the randomly selected blazks and its neighbors within range This is a well established
Receiving nodes perform original file recovery gsthe connectivity model of the random wireless network
following decoding rule: enviroment, called random geometric gragisl,r) [5]. In

« Upon collecting k linearly independent encodedour parameter settings, we use their fundamentatar
blocks, a node decodes the source data by solvingaglius of connectivity result that states thaprider for the
system of linear equations using GaussiaRetwork graph to be connected with high probabiN
elimination. In other words x k matrixG = [gy, g;, — . the following holds:

..., g of the received global encoding row-vectors is r>r = [logN+c )
first inverted and than multiplied with the veciofr ¢ N
the received encoded blocks [c;, C, ..., CJ. wherec — oo.

The complexity of distributed randomized linear We classify the set of sensors in WSN into the ethre
network coding is as follows. The encoding prodeses Sensor classes:

mL field multiplications for ¢® and mk field * Source sensorS: sensor from this class is able to

multiplications for g™ The decoding takes an order of perform measurments and generate packets of

O(K’) field operations for the matrix inversion, ahé? source data. We assume that WSN contaswurce

field multiplications for the vector-matrix multightion. sensors5, 1<i <k, each of which produces a single

In the following, we focus on reducing this comjitgby block of datab; to be communicated to the collector.

assuming binary field arithmetic (simple ex-or cyim) We assume that the source data is generated

and the iterative decoding techniques. periodically, in the discrete time instaris k > 0,

with the relatively large period. We focus on a
Ill. Low-COMPLEXITY NETWORK CODING IN WSN single period fr, tsq)r] of transmission of data
blocks from the source nodes to the collector.

» Relay sensorR: relay sensors collect received data
into their buffer memory and are able to produce
encoded blocks based on their memory content. For

o o simplicity, we will initially assume that their bief

capacity is infinite, and leave the finite buffer

© © o ) memory considerations for our future work. We
o assume that there areelay sensors denotedRs1
<I<r.

« Collector sensor€: or gateways, represent one or
small number of WSN nodes that are connected

0 “ e with the outside network. The task of collector

I ° _ nodes is to collect data from their neighbors,

o o recover the set df source blockstf, by, ..., b that
© o© © originated at the source sensor nodes during desing

© Source Sensor Node time period, and forward this data to a database in

O Relay Sensor Node .

B Collector Sensor Node the outside network.

Figure 1. Wireless Sensor Network Setting. All of the three classes of sensors are essensatiple
wireless nodes with different modules. If the ndies a
In the following, we focus on the WSN environmeat asensing module, it is a8 node, if it has a buffer memory
the communication network of interest. The possiéd of and processing module, it isranode, and if it has buffer
low-complexity data collection in WSN are discussednemory, processing capabilities and network interfa
where the goal is to transmit an occasionally geeer towards the outside network, it iCanode. It is possible in
data at the source sensor nodes to the small nuofberpractice that a single node possess more than fothese
collector sensor nodes (gateways). We search for fanctionalities, but for simplicity, we assume tliaése sets
mechanism that will be distributed, simple to inmpént, are disjoint in the following study. Also, we assurhat
robust, and require as small as possible number thiere is considerably larger number $fand R, thanC

transmissions by each sensor node to make the esounodes (Figure 1).

sensor nodes content available at the receivinipatof The WSN network operation proceeds as followshat t

nodes. Our development is based on both, the nletwdsegining of the time period, in the time instgptall of the

coding principles and the fountain codes. To sorter#, S nodes sense their environment and genérateirce data
our setting is similar to the work presented in[&] blocks b,. These data blocks are distributed acrossShe
nodes of WSN and the goal is to collect this infation at

a single or small number of collecting points imsithe

o]

O

A. System Setting
We assume the WSN scenario with sensor nodes
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WSN. At the same initial time instamg, the S nodes distributed acrossS nodes, noS or R node is able to
broadcast their data blocks to their neighbors, et produce independent fountain-like encoded blockgh wi
communication task is over until the beginningted hext binary global encoding vector drawn from the sadct
time period tjqr. In the following period, duringT  degree distributio®2(x). The R nodes are limited by the
discrete time intervals, thR nodes are responsible forcontent of their memory, and the requirement fow-lo
disseminating this information. We assume thatth& complexity operation. The complexity of this prailés
beginning of each of discrete time instant in the intervaldemonstrated in an interesting study performedéin Ih
[tir, ti+1)7], €achR node produces a single encoded packebur work, we would like to estimate, given the psec
and broadcasts this packet to all of its neighlipRnand description of the low-complexity, sparse, binaste data
C nodes $ nodes do not have receiving buffer memory)combining algorithm inR nodes, the basic properties of
The encoded packet is produced using linear netwottke encoded data received at the collector nodeshe
coding scheme, as described in the previous sedidgrof number of nodes in WSN increases. As this goahit qf
the existing packets in the node’s memdZynodes only our current research, in the following, we provadessults
collect blocks received from their neighbors, bot mbt of simulation study, experimenting with seveRilnodes
produce and broadcast encoded data. Upon collectidgta combining algorithms.
sufficient number of packets inside its buffer meyna
node attempts to recover tBenodes data. The main goal IV. SIMULATION RESULTS
of our (simulation) study is to make available ailthe In this section, we search for an intuition on hemaof
source data blockdy, by, ..., b at anyC node with high 3 simple sparse binary data combining schem&srindes
probability for as short time perio@l as possible, using ysing simulation experiments. We set up a simufatio
low-complexity operations iR andC nodes. where the total oN = 101 sensor nodes are uniformly
B. Low-Complexity Network Coding for WSN distributed across the unit square surface. Thestnéssion

. . range of each sensor is set te 0.35. The set of sensors is
In this study, we take a different approach, based divided into 50S sensors, 5R sensors, and a sing@

sparse graphs encoding and decoding techniquesguce . : . .
P grap ga g quesc sensor. We set the time period To= 100 discrete time
the sensor node operation complexity. We delibbrate; ) . .
S L instants. At each time instant, eaRhnode combines the
trade content distribution system efficiency fos ibwer -
. S . . data in its memory and broadcasts a new encodett bio
complexity. We minimize the encoding complexity B

nodes by reducing the base finite field to a birfatg Fo. ;fte”me'?sh?ﬁ;saeﬁ'jg{n atofei‘ghmgmgr '”:;i?;n;ﬁ:n”d‘;‘i:e
In other words, new encoded blocks are formed Ibjt-a P g y

: . . , .. Interested in the intermediate number of recovefed
wise xor-ing of the encoded blocks contained inrtbde's . i
. . L sensor blocks at each time instant. As our bassttheme
memory. This way, we avoid field multiplications dan ; :
. ) : for comparison, we start with the performance sfraple
substantially decrease the encoding complexity. él@w, X
. ] . - . forwarding scheme.
by using binary field coefficients we deterioratgstem
efficiency, since distributed randomized linear wark A. Simple Random Forwarding R Nodes
coding performance is tightly related with the béisée In this scheme, thR nodes data combining algorithm is
field size. On the other hand, linear combinatipredduced the simplest possible. Th® node actually does not
by each node are still dense and we are restrded  combine, but only forwards randomly selected datekpt
applying computationally efficient sparse-graphrat&e  from its memory content. We are interested in thenlper

decoding techniques at the collector nodes, toaedbe f giscrete time instants needed on average teatolhe
decoding complexity of Gaussian elimination decgdin  gorce data at the collector node.

Our next step is to ensure that the exchanged cod
blocks are described by sufficiently sparse bingigbal T e
encoding vectors. At th@ nodes we apply the iterative BP 4 e e R R
decoding applied on the incoming encoded block
throughout the receiving process. This places @mpode
in the network in an equivalent setting as a didgantain
receiver. ldeally, in order to maximize efficiengye.
minimize ¢), eachC node should obtain from any of its
neighbors an independent stream of fountain-likeodad
blocks. In other words, we would like to ensuret thiaary
global encoding vector of any received encoded kolatc
any C node is as such as it is randomly and uniforml
sampled at a fountain source using appropriatdcted
degree distributio2(x). In the most general setting, where

35

30

Mumber of collected source symbols
4

any node in the network can beCanode, the previous eoo®woow @ w0 W B ®
requirement extends to any encoded block creatatein
network. Figure 2. Data Collecting Performance with Simple Brwarding.

It is clear that in WSN scenario, where the soda® is
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Figure 2 presents the simulation results of thepEm

random forwarding scenario. Total of 100 simulatians

In the simple combining scheme example, the data
combining degree distribution is set@x(X) = p; + (1 —

are presented, and the average performance of ¢ However, the major future goal of our study ds t
decoding process across simulation runs is giveth@s optimize the data combining degree distributiigx) with

thick black line. If we change the WSN connectivity

respect to the duration of the data collection pss¢ and

changing the transmission range the data collection the parameters of the randomly deployed WSN.
speed changes considerably. Figure 3 presents/énage
data collection performance over 100 simulationsrun
where the simple random forwardingRnnodes is applied, scheme using data combining degree distributdafx) =

for the transmission rangevarying between 0.2 and 0.4.p; + (1 —p;), wherep, is varied between 8 p; < 1. The
The simulation runs where any 8or C nodes are initially average number of recovered source symbols 4t thede
placed out of range of any othBror C nodes, i.e., there after T = {20,40,60,80,100} time instants, averaged over
exist isolatedS or C nodes, are repeated. In the following 100 simulation runs, is examined as a function fef t
we compare the results of the simple forwardingesw probability p;. The simulation results clearly demonstrate

with another simple data combining schem®inodes.

I e e I I s e S B

Mumbsr of collectad source symbals

1w 0 30 40 50
T — Time Period

Figure 3. Simple Forwarding Performance for Different r.

B. Simple Random Data CombiningRiNodes

60 70 20 90 100

Figure 4 illustrates the results of simple data lsiming

that obtaining a good2g(x), which would significantly
improve the simple random forwarding operation Pof
nodes, assuming the iterative decoder atGheode, is a
complex task. Simple random forwarding beats
performance any version of simple random data coimpi
parameterized for different values pf Obviously, more
involved design ofQxr(X) is needed in order to make an
improvement over the simple data forwarding schene.
leave it for our future investigation.

in

V. CONCLUSION

In this paper, we examined some possibilities éiust,
low-complexity, low-power consuming and efficient
strategies for data collection in WSN. Our datdemion
strategy does not rely on data routing in WSN,dnly on
the broadcast nature of sensor communication. ©héaf
our study is to design a data combining schenk imodes

Unlike the previousR node behavior, wherR nodes that would maximize the speed of data collectioncpss.
simply randomly forward the original source blodksm This paper provides only a glimpse into the problem
their memory, here we allow data combiningRmodes. formulation, supported by simulation results of ewf

As a very simple scheme, we select the one wRenede simpleR node forwarding and combining schemes, and the

either selects a single block from its memory an€lrther results on the topic are expected in theréu

broadcasts it, with probability;, 0 < p; < 1, or randomly
selects two different blocks from its memory andf@ens
their xor-ing and broadcasting. We representRhaode [1]
data combining wusing its data combining degree

distribution Qr(X) = Z: p,x', whereD is the maximum [2]

combining degree ang, is the probability of random [3]

combining ofi packets from th& node memory. ”

(5]
(6]

| ——T1=20
i| ——T=20

| ——T=80

(71

(8]

Mumber of collected source symbals

(9]
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Figure 3. Simple Data Combining Performance for Diferent pi.
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