
  
Abstract — In this paper, we investigate the possibilities of 

developing and applying reduced complexity network coding 
schemes. The proposed schemes are motivated by recent 
developments in the field of sparse-graph erasure codes and 
the iterative decoding algorithms. Performances of low-
complexity network coding schemes deployed for the purpose 
of data collection in wireless sensor networks are analyzed by 
means of the simulation experiments. 
 

Keywords — Data Collection, Network Coding, Wireless 
Sensor Networks. 

I. INTRODUCTION 

N the landmark paper [1], Ahlswede et al. established 
the multicast capacity of a network of lossless links, and 

introduced a technique named network coding, as a 
generalization of routing, necessary to achieve the 
multicast capacity. Introduction of network coding 
paradigm into communication networks created a wave of 
theoretical research on this topic, followed by a wave of 
research that analyzes possibilities for its applications in 
the real-world scenarios. In this paper, we investigate the 
possibilities of developing and applying reduced 
complexity network coding schemes, motivated by a well 
developed sparse-graph erasure codes theory. 
Performances of low-complexity network coding schemes 
deployed for the purpose of data collection in wireless 
sensor networks (WSN) are analyzed by means of the 
simulation experiments. 

 Practical randomized network coding framework is 
first described in [2]. In a certain sense, it shares a 
common ground with the recently popular idea of fountain 
coding developed in coding theory [3][4]. Both are 
developed for single-source multicast setting over the 
packet based networks, where the data generated at the 
source node should be available at the destination nodes. 
In fountain coding scenario, the data encoding process is 
performed only at the source node and data multicast can 
be understood as a set of erasure channels with different 
erasure statistics between the source node and each 
destination node. In the network coding scenario, the 
whole network between the source and the set of 
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destination nodes is used for the encoding process. 
Another fundamental difference between the two is that 
fountain codes employ sparse linear equations with binary 
coefficients as their encoded data, decoded by simple 
linear-time iterative BP decoder at the destination, whereas 
as a result of network coding operation, the receivers are 
supplied by a standard, non-sparse, linear equations with 
coefficients from a selected finite field, decoded by the 
cubic complexity Gaussian elimination decoding. The 
simplicity and complexity advantages of the fountain 
approach, and network capacity utilization advantages of 
network coding, motivates the idea of combining the two 
schemes, particularly in reduced functionality 
environments such as wireless sensor networks, which is 
the direction we follow in this paper. 

II.  PRACTICAL NETWORK CODING SCHEMES 

In this subsection, we describe the standard for practical 
implementation of network coding schemes, as described 
in [2]. The source data, residing in the source node 
memory, is divided into k data blocks b = [b1, b2, …, bk] of 
length l bits, where l is typically a whole number of bytes. 
The base finite field F(2q) of size 2q is selected; typically q 
equal to 8 or 16 in practical scenarios. It is assumed that q 
divides l so we can segment each data block into a 
sequence of L=l/q elements from F(2q). Each field element 
can be represented as q-bit sequence. Multiplication of q-
bit field element with l-bit block is performed as F(2q) 
field multiplication of the field element with each of L 
consecutive, non-overlapping, q-bit segments of the l-bit 
block. Each node performs distributed randomized linear 
network coding on the set of M coded blocks c = [c1, c2, 
…, cM] contained in its memory (the blocks received so 
far), or on the set of source blocks b in case of the source 
node. Each encoded block ci is of the same length as the 
source blocks and is transmitted together with the vector g 
of its global encoding coefficients g = [g1, g2, …, gk], gi ∈  
F(2q), such that ci = gbT. It is assumed that l << kq, which 
makes the size of the overhead g acceptable. Every node in 
the network sends encoded blocks cout concatenated with 
its global encoding vectors gout on its outgoing links 
whenever transmission opportunity occurs, using the 
following encoding rule: 

• Creating encoded block cout: Randomly select m � M 
field elements y = [y1, y2, …, ym] and form a random 
linear combination with m randomly chosen encoded 
blocks c’  = [c’ 1, c’ 2, …, c’ m] contained in memory, 
cout = y c’ T. 
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• Calculating global encoding vector gout: Multiply 
vector y with m x K matrix containing as its rows the 
global encoding vectors [g’1, g’2, …, g’m] 
corresponding to the randomly selected blocks c’. 

Receiving nodes perform original file recovery using the 
following decoding rule: 

• Upon collecting k linearly independent encoded 
blocks, a node decodes the source data by solving a 
system of linear equations using Gaussian 
elimination. In other words, k x k matrix G = [g1, g2, 
…, gk] of the received global encoding row-vectors is 
first inverted and than multiplied with the vector of 
the received encoded blocks c = [c1, c2, …, ck].     

The complexity of distributed randomized linear 
network coding is as follows. The encoding process takes 
mL field multiplications for cout and mk field 
multiplications for gout. The decoding takes an order of 
O(k3) field operations for the matrix inversion, and Lk2 
field multiplications for the vector-matrix multiplication. 
In the following, we focus on reducing this complexity by 
assuming binary field arithmetic (simple ex-or operation) 
and the iterative decoding techniques. 

III.  LOW-COMPLEXITY NETWORK CODING IN WSN 

 
Figure 1. Wireless Sensor Network Setting. 

 
In the following, we focus on the WSN environment as 

the communication network of interest. The possibilities of 
low-complexity data collection in WSN are discussed, 
where the goal is to transmit an occasionally generated 
data at the source sensor nodes to the small number of 
collector sensor nodes (gateways). We search for a 
mechanism that will be distributed, simple to implement, 
robust, and require as small as possible number of 
transmissions by each sensor node to make the source 
sensor nodes content available at the receiving collector 
nodes. Our development is based on both, the network 
coding principles and the fountain codes. To some extent, 
our setting is similar to the work presented in [7]-[9]. 

A. System Setting 

We assume the WSN scenario with N sensor nodes  

randomly distributed over a unit square area. Each sensor 
is equipped with a wireless communication capabilities 
that enable reliable data transmission between the sensor 
and its neighbors within range r. This is a well established 
connectivity model of the random wireless network 
enviroment, called random geometric graphs G(N,r) [5]. In 
our parameter settings, we use their fundamental critical 
radius of connectivity result that states that, in order for the 
network graph to be connected with high probability as N 
� �, the following holds:  

                              N
cN

crr π
+=> log

,      (1) 

where c � �.  
We classify the set of sensors in WSN into the three 

sensor classes: 
• Source sensors S: sensor from this class is able to 

perform measurments and generate packets of 
source data. We assume that WSN contains k source 
sensors Si, 1 � i � k, each of which produces a single 
block of data bi to be communicated to the collector. 
We assume that the source data is generated 
periodically, in the discrete time instants tkT, k � 0, 
with the relatively large period T. We focus on a 
single period [tiT, t(i+1)T] of transmission of data 
blocks from the source nodes to the collector. 

• Relay sensors R: relay sensors collect received data 
into their buffer memory and are able to produce 
encoded blocks based on their memory content. For 
simplicity, we will initially assume that their buffer 
capacity is infinite, and leave the finite buffer 
memory considerations for our future work. We 
assume that there are r relay sensors denoted as Ri, 1 
� i � r. 

• Collector sensors C: or gateways, represent one or 
small number of WSN nodes that are connected 
with the outside network. The task of collector 
nodes is to collect data from their neighbors, 
recover the set of k source blocks [b1, b2, …, bk] that 
originated at the source sensor nodes during a single 
time period, and forward this data to a database in 
the outside network. 

All of the three classes of sensors are essentially simple 
wireless nodes with different modules. If the node has a 
sensing module, it is an S node, if it has a buffer memory 
and processing module, it is a R node, and if it has buffer 
memory, processing capabilities and network interface 
towards the outside network, it is a C node. It is possible in 
practice that a single node possess more than one of these 
functionalities, but for simplicity, we assume that these sets 
are disjoint in the following study. Also, we assume that 
there is considerably larger number of S and R, than C 
nodes (Figure 1). 

The WSN network operation proceeds as follows. At the 
begining of the time period, in the time instant tiT, all of the 
S nodes sense their environment and generate k source data 
blocks bi. These data blocks are distributed across the S 
nodes of WSN and the goal is to collect this information at 
a single or small number of collecting points inside the 
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WSN. At the same initial time instant tiT, the S nodes 
broadcast their data blocks to their neighbors, and their 
communication task is over until the beginning of the next 
time period t(i+1)T. In the following period, during T 
discrete time intervals, the R nodes are responsible for 
disseminating this information. We assume that, at the 
beginning of each of T discrete time instant in the interval 
[tiT, t(i+1)T], each R node produces a single encoded packet, 
and broadcasts this packet to all of its neighboring R and 
C nodes (S nodes do not have receiving buffer memory). 
The encoded packet is produced using linear network 
coding scheme, as described in the previous section, out of 
the existing packets in the node’s memory. C nodes only 
collect blocks received from their neighbors, but do not 
produce and broadcast encoded data. Upon collecting 
sufficient number of packets inside its buffer memory, C 
node attempts to recover the S nodes data. The main goal 
of our (simulation) study is to make available all of the 
source data blocks [b1, b2, …, bk] at any C node with high 
probability for as short time period T as possible, using 
low-complexity operations in R and C nodes.  

B. Low-Complexity Network Coding for WSN 

In this study, we take a different approach, based on a 
sparse graphs encoding and decoding techniques, to reduce 
the sensor node operation complexity. We deliberately 
trade content distribution system efficiency for its lower 
complexity. We minimize the encoding complexity in R 
nodes by reducing the base finite field to a binary field F2. 
In other words, new encoded blocks are formed by a bit-
wise xor-ing of the encoded blocks contained in the node's 
memory. This way, we avoid field multiplications and 
substantially decrease the encoding complexity. However, 
by using binary field coefficients we deteriorate system 
efficiency, since distributed randomized linear network 
coding performance is tightly related with the base finite 
field size. On the other hand, linear combinations produced 
by each node are still dense and we are restrained from 
applying computationally efficient sparse-graph iterative 
decoding techniques at the collector nodes, to reduce the 
decoding complexity of Gaussian elimination decoding.    

Our next step is to ensure that the exchanged coded 
blocks are described by sufficiently sparse binary global 
encoding vectors. At the C nodes we apply the iterative BP 
decoding applied on the incoming encoded blocks 
throughout the receiving process. This places any C node 
in the network in an equivalent setting as a digital fountain 
receiver. Ideally, in order to maximize efficiency (i.e. 
minimize �), each C node should obtain from any of its 
neighbors an independent stream of fountain-like encoded 
blocks. In other words, we would like to ensure that binary 
global encoding vector of any received encoded block at 
any C node is as such as it is randomly and uniformly 
sampled at a fountain source using appropriately selected 
degree distribution �(x). In the most general setting, where 
any node in the network can be a C node, the previous 
requirement extends to any encoded block created in the 
network. 

It is clear that in WSN scenario, where the source data is 

distributed across S nodes, no S or R node is able to 
produce independent fountain-like encoded blocks with 
binary global encoding vector drawn from the selected 
degree distribution �(x). The R nodes are limited by the 
content of their memory, and the requirement for low-
complexity operation. The complexity of this problem is 
demonstrated in an interesting study performed in [6]. In 
our work, we would like to estimate, given the precise 
description of the low-complexity, sparse, binary-field data 
combining algorithm in R nodes, the basic properties of 
the encoded data received at the collector nodes, as the 
number of nodes in WSN increases. As this goal is part of 
our current research, in the following, we provide a results 
of simulation study, experimenting with several R nodes 
data combining algorithms. 

IV.  SIMULATION RESULTS 

In this section, we search for an intuition on behavior of 
a simple sparse binary data combining schemes in R nodes 
using simulation experiments. We set up a simulation 
where the total of N = 101 sensor nodes are uniformly 
distributed across the unit square surface. The transmission 
range of each sensor is set to r = 0.35. The set of sensors is 
divided into 50 S sensors, 50 R sensors, and a single C 
sensor. We set the time period to T = 100 discrete time 
instants. At each time instant, each R node combines the 
data in its memory and broadcasts a new encoded block to 
its neighbors. Also, at each time instant the C node 
attempts the decoding of its memory content and we are 
interested in the intermediate number of recovered S 
sensor blocks at each time instant. As our baseline scheme 
for comparison, we start with the performance of a simple 
forwarding scheme. 

A. Simple Random Forwarding in R Nodes  

In this scheme, the R nodes data combining algorithm is 
the simplest possible. The R node actually does not 
combine, but only forwards randomly selected data packet 
from its memory content. We are interested in the number 
of discrete time instants needed on average to collect the 
source data at the collector node. 

 
Figure 2. Data Collecting Performance with Simple Forwarding. 
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Figure 2 presents the simulation results of the simple 
random forwarding scenario. Total of 100 simulation runs 
are presented, and the average performance of the 
decoding process across simulation runs is given as the 
thick black line. If we change the WSN connectivity by 
changing the transmission range r, the data collection 
speed changes considerably. Figure 3 presents the average 
data collection performance over 100 simulation runs, 
where the simple random forwarding in R nodes is applied, 
for the transmission range r varying between 0.2 and 0.4. 
The simulation runs where any of S or C nodes are initially 
placed out of range of any other R or C nodes, i.e., there 
exist isolated S or C nodes, are repeated. In the following, 
we compare the results of the simple forwarding scheme 
with another simple data combining scheme in R nodes. 

 
Figure 3. Simple Forwarding Performance for Different r.  

B. Simple Random Data Combining in R Nodes 

Unlike the previous R node behavior, where R nodes 
simply randomly forward the original source blocks from 
their memory, here we allow data combining in R nodes. 
As a very simple scheme, we select the one where R node 
either selects a single block from its memory and 
broadcasts it, with probability p1, 0 � p1 � 1, or randomly 
selects two different blocks from its memory and performs 
their xor-ing and broadcasting. We represent the R node 
data combining using its data combining degree 

distribution �R(x) = � =

D

i

i
i xp

1
, where D is the maximum 

combining degree and p1 is the probability of random 
combining of i packets from the R node memory.  

 
Figure 3. Simple Data Combining Performance for Different p1.  

In the simple combining scheme example, the data 
combining degree distribution is set to �R(x) = p1 + (1 – 
p1). However, the major future goal of our study is to 
optimize the data combining degree distribution �R(x) with 
respect to the duration of the data collection process, and 
the parameters of the randomly deployed WSN. 
 

Figure 4 illustrates the results of simple data combining 
scheme using data combining degree distribution �R(x) = 
p1 + (1 – p1), where p1 is varied between 0 � p1 � 1. The 
average number of recovered source symbols at the C node 
after T = {20,40,60,80,100} time instants, averaged over 
100 simulation runs, is examined as a function of the 
probability p1. The simulation results clearly demonstrate 
that obtaining a good �R(x), which would significantly 
improve the simple random forwarding operation of R 
nodes, assuming the iterative decoder at the C node, is a 
complex task. Simple random forwarding beats in 
performance any version of simple random data combining 
parameterized for different values of p1. Obviously, more 
involved design of �R(x) is needed in order to make an 
improvement over the simple data forwarding scheme. We 
leave it for our future investigation. 

V. CONCLUSION 

In this paper, we examined some possibilities for robust, 
low-complexity, low-power consuming and efficient 
strategies for data collection in WSN. Our data collection 
strategy does not rely on data routing in WSN, but only on 
the broadcast nature of sensor communication. The goal of 
our study is to design a data combining scheme in R nodes 
that would maximize the speed of data collection process. 
This paper provides only a glimpse into the problem 
formulation, supported by simulation results of a few 
simple R node forwarding and combining schemes, and the 
further results on the topic are expected in the future. 
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